
Online Learning

Jordan Boyd-Graber
University of Colorado Boulder
LECTURE 21

Slides adapted from Mohri

Jordan Boyd-Graber | Boulder Online Learning | 1 of 31



Motivation

• PAC learning: distribution fixed over time (training and test), IID
assumption.

• On-line learning:
◦ no distributional assumption.
◦ worst-case analysis (adversarial).
◦ mixed training and test.
◦ Performance measure: mistake model, regret.
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General Online Setting

• For t = 1 to T :
◦ Get instance xt ∈ X
◦ Predict ŷt ∈ Y
◦ Get true label yt ∈ Y
◦ Incur loss L(ŷt , yt)

• Classification: Y = {0, 1}, L(y , y ′) = |y ′ − y |
• Regression: Y ⊂ R, L(y , y ′) = (y ′ − y)2

• Objective: Minimize total loss
∑

t L(ŷt , yt)
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Experts

Plan

Experts

Perceptron Algorithm

Online Perceptron for Structure Learning
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Experts

Prediction with Expert Advice

• For t = 1 to T :
◦ Get instance xt ∈ X and advice at , i ∈ Y , i ∈ [1,N]
◦ Predict ŷt ∈ Y
◦ Get true label yt ∈ Y
◦ Incur loss L(ŷt , yt)

• Objective: Minimize regret, i.e., difference of total loss vs. best
expert

Regret(T ) =
∑
t

L(ŷt , yt)−min
i

∑
t

L(at,i , yt) (1)
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Experts

Mistake Bound Model

• Define the maximum number of mistakes a learning algorithm L
makes to learn a concept c over any set of examples (until it’s
perfect).

ML(c) = max
x1,...,xT

|mistakes(L, c)| (2)

• For any concept class C , this is the max over concepts c.

ML(C ) = max
c∈C

ML(c) (3)

• In the expert advice case, assumes some expert matches the
concept (realizable)
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Experts

Halving Algorithm

H1 ← H;
for t ← 1 . . .T do

Receive xt ;
ŷt ← Majority(Ht , ~at , xt);
Receive yt ;
if ŷt 6= yt then

Ht+1 ← {a ∈ Ht : a(xt) = yt};
return HT+1

Algorithm 1: The Halving Algorithm (Mitchell, 1997)
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Experts

Halving Algorithm Bound (Littlestone, 1998)

• For a finite hypothesis set

MHalving(H) ≤ lg |H| (4)

• After each mistake, the hypothesis set is reduced by at least by half

• Consider the optimal mistake bound opt(H). Then

VC(H) ≤ opt(H) ≤ MHalving(H) ≤ lg |H| (5)

• For a fully shattered set, form a binary tree of mistakes with height
VC(H)

• What about non-realizable case?
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Experts

Weighted Majority (Littlestone and Warmuth, 1998)

for t ← 1 . . .N do
w1,i ← 1;

for t ← 1 . . .T do
Receive xt ;

ŷt ← 1
[∑

yt,i=1 wt ≥
∑

yt,i=0 wt

]
;

Receive yt ;
if ŷt 6= yt then

for t ← 1 . . .N do
if ŷt 6= yt then

wt+1,i ← βwt,i ;

else
wt+1,i ← wt,i

return wT+1

• Weights for every expert

• Classifications in favor of
side with higher total
weight (y ∈ {0, 1})

• Experts that are wrong
get their weights
decreased (β ∈ [0, 1])

• If you’re right, you stay
unchanged
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ŷt ← 1
[∑

yt,i=1 wt ≥
∑

yt,i=0 wt

]
;

Receive yt ;
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Experts

Weighted Majority

• Let mt be the number of mistakes made by WM until time t

• Let m∗t be the best expert’s mistakes until time t

mt ≤
logN + m∗t log 1

β

log 2
1+β

(6)

• Thus, mistake bound is O(logN) plus the best expert

• Halving algorithm β = 0
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Experts

Proof: Potential Function

• Potential function is the sum of all weights

Φt ≡
∑
i

wt,i (7)

• We’ll create sandwich of upper and lower bounds

• For any expert i , we have lower bound

Φt ≥ wt,i = βmt ,i (8)
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Weights are nonnegative, so
∑
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Experts

Proof: Potential Function

• Potential function is the sum of all weights

Φt ≡
∑
i

wt,i (7)

• We’ll create sandwich of upper and lower bounds

• For any expert i , we have lower bound

Φt ≥ wt,i = βmt ,i (8)

Each error multiplicatively reduces weight by β
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Experts

Proof: Potential Function (Upper Bound)

• If an algorithm makes an error at round t

Φt+1 ≤
Φt

2
+
βΦt

2
(9)
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• After mT mistakes after T rounds
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[
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]mT
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Experts

Weighted Majority Proof

• Put the two inequalities together, using the best expert

βm
∗
T ≤ ΦT ≤

[
1 + β

2

]mT

N (12)

• Take the log of both sides

m∗T log β ≤ logN + mT log

[
1 + β

2

]
(13)

• Solve for mT

mT ≤
logN + m∗T log 1

β

log
[

2
1+β

] (14)
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Experts

Weighted Majority Recap

• Simple algorithm

• No harsh assumptions (non-realizable)

• Depends on best learner

• Downside: Takes a long time to do well in worst case (but okay in
practice)

• Solution: Randomization
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Perceptron Algorithm

Plan

Experts

Perceptron Algorithm

Online Perceptron for Structure Learning
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Perceptron Algorithm

Perceptron Algorithm

• Online algorithm for classification

• Very similar to logistic regression (but 0/1 loss)

• But what can we prove?
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Perceptron Algorithm

Perceptron Algorithm

~w1 ← ~0;
for t ← 1 . . .T do

Receive xt ;
ŷt ← sgn(~wt · ~xt);
Receive yt ;
if ŷt 6= yt then

~wt+1 ← ~wt + yt~xt ;
else

~wt+1 ← wt ;
return wT+1

Algorithm 2: Perceptron Algorithm (Rosenblatt, 1958)
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Perceptron Algorithm

Objective Function

• Optimizes
1

T

∑
t

max (0,−yt(~w · xt)) (15)

• Convex but not differentiable
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Perceptron Algorithm

Margin and Errors

• If there’s a good margin ρ,
you’ll converge quickly

• Whenever you se an error, you
move the classifier to get it
right

• Convergence only possible if
data are separable
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Perceptron Algorithm

How many errors does Perceptron make?

• If your data are in a R ball and there is a margin

ρ ≤ yt(~v · ~xt)
||v ||

(16)

for some ~v , then the number of mistakes is bounded by R2/ρ2

• The places where you make an error are support vectors

• Convergence can be slow for small margins
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Online Perceptron for Structure Learning

Plan

Experts

Perceptron Algorithm

Online Perceptron for Structure Learning
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Online Perceptron for Structure Learning

Binary to Structure
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Online Perceptron for Structure Learning

Generic Perceptron

• perceptron is the simplest machine learning algorithm

• online-learning: one example at a time

• learning by doing
◦ find the best output under the current weights
◦ update weights at mistakes
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Online Perceptron for Structure Learning

Structured Perceptron
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Online Perceptron for Structure Learning

Perceptron Algorithm
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Online Perceptron for Structure Learning

POS Example
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Online Perceptron for Structure Learning

What must be true?

• Finding highest scoring structure must be really fast (you’ll do it
often)

• Requires some sort of dynamic programming algorithm

• For tagging: features must be local to y (but can be global to x)
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Online Perceptron for Structure Learning

Averaging is Good
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Online Perceptron for Structure Learning

Smoothing

• Must include subset templates for features

• For example, if you have feature (t0,w0,w−1), you must also have
◦ (t0,w0); (t0,w−1); (w0,w−1)
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Online Perceptron for Structure Learning

Inexact Search?

• Sometimes search is too hard

• So we use beam search instead

• How to create algorithms that respect this relaxation: track when
right answer falls off the beam
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Online Perceptron for Structure Learning

Wrapup

• Structured prediction: when one label isn’t enough

• Generative models can help with not a lot of data

• Discriminative models are state of the art

• More in Natural Language Processing (at least when I teach it)
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