



# Solving Regression

Jordan Boyd-Graber University of Colorado Boulder LECTURE 12

Slides adapted from Matt Nedrich and Trevor Hastie

- We talked about what regression is, but now how to solve these problems
- Gradient Descent for OLS
- Least Angle Regression for LASSO

#### Plan

## Gradient Descent for OLS

Least Angle Regression

#### **Closed Form Estimator**

Possible for ridge regression

$$\left(\mathbf{X}^{T}\mathbf{X} + \lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y}$$
(1)

- But inverting a matrix is hard! Doesn't always scale.
- What if your data don't live in memory?

#### **Closed Form Estimator**

Possible for ridge regression

$$\left(\mathbf{X}^{T}\mathbf{X} + \lambda I\right)^{-1} \mathbf{X}^{T} \mathbf{y}$$
(1)

- But inverting a matrix is hard! Doesn't always scale.
- What if your data don't live in memory?
- Stochastic gradient descent

## Objective

• Observations should be close to  $ec{eta}x^ op$ 

$$\mathsf{Error}(eta) = rac{1}{N} \sum_{i=1}^{N} \left( y_i - ec{eta} x^{ op} 
ight)^2$$

• Equivalent to observations from Gaussian

(2)

#### **OLS Gradient for 2D**

For convenience, write predictions as mx + b

$$\frac{\partial}{\partial \mathbf{m}} = \frac{2}{N} \sum_{i=1}^{N} -x_i (y_i - (mx_i + b))$$
$$\frac{\partial}{\partial \mathbf{b}} = \frac{2}{N} \sum_{i=1}^{N} -(y_i - (mx_i + b))$$

#### **OLS Gradient for 2D**

For convenience, write predictions as mx + b

$$\frac{\partial}{\partial \mathbf{m}} = \frac{2}{N} \sum_{i=1}^{N} -x_i (y_i - (mx_i + b))$$
$$\frac{\partial}{\partial \mathbf{b}} = \frac{2}{N} \sum_{i=1}^{N} -(y_i - (mx_i + b))$$

Possible tweaks: stochastic gradient descent, adding regularization

#### Gradient Descent for OLS

## Toy Data



Toy Data















## Plan

## Gradient Descent for OLS

Least Angle Regression

- Objective isn't differentiable
- Combinatorial optimization
- Similar to SMO algorithm for SVMs

## LAR Algorithm

- 1. Start with r = y,  $\beta_1, \ldots, \beta_p = 0$ . Assume  $x_j$  are all mean zero and unit variance.
- 2. Until all predictors have been used and  $\langle r, x_j \rangle = 0 \forall j$ :
  - 2.1 Find predictor  $x_j$  most correlated with residual r
  - 2.2 Increase  $\beta_j$  in the direction of sign  $\langle r, x_j \rangle$  until some  $x_k$  has as much correlation with r as  $x_j$  or the sign of  $\beta_j$  changes. Call this distance u
  - 2.3 Update prediction  $\mu$ , residual r



Initially, the prediction is 0, the mean of y (remember, everything is standardized).  $x_1$  is most correlated with y, so we move in that direction (toward the OLS solution of  $y_1^*$ ). We move a distance  $u_1$  until  $x_2$  has as much correlation with the residual.



Our new estimate is  $\mu_1$ , a function of just  $x_1$ . Now we need to start using  $x_2$ , so we incorporate that into our estimate.



We are now moving toward the OLS solution using these two variables,  $y_2^*$ , using a combination of both  $x_1$  and  $x_2$ .

#### Least Angle Regression

## Intuition



We move our estimate in that direction until some other variable has higher correlation with the residual. We keep moving closer and closer (but never quite reaching) the OLS solution with the current set of variables.



## **MPG** Dataset



- Predict mpg from features of a car
  - 1. Number of cylinders
  - 2. Displacement
  - 3. Horsepower
  - 4. Weight
  - 5. Acceleration
  - 6. Year





The weight of the car is has the highest (negative) correlation with the weight, so we add that to the active set.





After making predictions with only the weight, the year is the most (positively) correlated, so it gets added to the active set.





At this point, the correlations are getting fairly small. Horsepower wins, but only contributes a tiny amount.





Same story with the number of cylinders ....





and acceleration.





Now the year is again the most correlated. But take a look at displacement; it's negatively correlated (about -2.5).





After accounting for the other variables, it's positively correlated.





Now we have our final model.





## **Coefficient Trajectories**



- Interpretation of boosting for continuous problems
- About as difficult as computing OLS for each group of variables
- No combinatorial optimization
- Finds all Lasso solutions

- Objective function for regression
- Algorithms for OLS and regularized regression
- Like classification, a workhorse method for continuous data