

Slides adapted from Rob Schapire

Boosting

Jordan Boyd-Graber University of Colorado Boulder LECTURE 10

Goal

Automatically categorize type of call requested by phone customer (Collect, CallingCard, PersonToPerson, etc.)

- yes I'd like to place a collect call long distance please (Collect)
- operator I need to make a call but I need to bill it to my office (ThirdNumber)
- yes I'd like to place a call on my master card please (CallingCard)
- I just called a number in sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off of my bill (BillingCredit)

- devise computer program for deriving rough rules of thumb
- apply procedure to subset of examples
- obtain rule of thumb
- apply to second subset of examples
- obtain second rule of thumb
- repeat T times

- How to choose examples
- How to combine rules of thumb

- How to choose examples concentrate on *hardest* examples (those most often misclassified by previous rules of thumb)
- How to combine rules of thumb

- How to choose examples concentrate on *hardest* examples (those most often misclassified by previous rules of thumb)
- How to **combine** rules of thumb take (weighted) majority vote of rules of thumb

Definition

general method of converting rough rules of thumb into highly accurate prediction rule

- assume given weak learning algorithm that can consistently find classifiers (rules of thumb) at least slightly better than random, say, accuracy $\geq 55\%$ (in two-class setting)
- given sufficient data, a boosting algorithm can provably construct single classifier with very high accuracy, say, 99%

Plan

Algorithm

Example

Generalization

Theoretical Analysis

Formal Description

- Training set $(x_1, y_1) \dots (x_m, y_m)$
- $y_i \in \{-1, +1\}$ is the label of instance x_i

Formal Description

- Training set $(x_1, y_1) \dots (x_m, y_m)$
- $y_i \in \{-1, +1\}$ is the label of instance x_i
- For t = 1, ..., T:
 - Construct distribution D_t on $\{1, \ldots, m\}$
 - Find weak classifier

$$h_t: \mathcal{X} \mapsto \{-1, +1\} \tag{1}$$

with small error ϵ_t on D_t :

$$\epsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right] \tag{2}$$

Formal Description

- Training set $(x_1, y_1) \dots (x_m, y_m)$
- $y_i \in \{-1, +1\}$ is the label of instance x_i
- For t = 1, ..., T:
 - Construct distribution D_t on $\{1, \ldots, m\}$
 - Find weak classifier

$$h_t: \mathcal{X} \mapsto \{-1, +1\} \tag{1}$$

with small error ϵ_t on D_t :

$$\epsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right] \tag{2}$$

Output final classifier H_{final}

• Data distribution D_t

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$
 - Given D_t and h_t :

$$D_{t+1}(i) \propto D_t(i) \cdot \exp\{-\alpha_t y_i h_t(x_i)\}$$
(3)
where $\alpha_t = \frac{1}{2} \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right) > 0$

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$
 - Given D_t and h_t :

$$D_{t+1}(i) \propto D_t(i) \cdot \exp\{-\alpha_t y_i h_t(x_i)\}$$
(3)
where $\alpha_t = \frac{1}{2} \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right) > 0$
Bigger if wrong, smaller if right

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$
 - Given D_t and h_t :

$$D_{t+1}(i) \propto D_t(i) \cdot \exp\{-\alpha_t y_i h_t(x_i)\}$$
(3)
where $\alpha_t = \frac{1}{2} \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right) > 0$
Weight by how good the weak learner is

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$ • Given D_t and h_t :

$$D_{t+1}(i) \propto D_t(i) \cdot \exp\left\{-\alpha_t y_i h_t(x_i)\right\}$$
(3)

where
$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$$

• Final classifier:

$$H_{fin}(x) = \operatorname{sign}\left(\sum_{t} \alpha_t h_t(x)\right) \tag{4}$$

Plan

Algorithm

Example

Generalization

Theoretical Analysis

Toy Example

Round 1

Round 2

Round 3

Final Classifier

Plan

Algorithm

Example

Generalization

Theoretical Analysis

Generalization

Generalization

Plan

Algorithm

Example

Generalization

Theoretical Analysis

Training Error

First, we can prove that the training error goes down. If we write the the error at time t as $\frac{1}{2}-\gamma_t$,

$$\hat{R}(h) \le \exp\left\{-2\sum_{t} \gamma_t^2\right\}$$
(5)

• If $\forall t : \gamma_t \geq \gamma > 0$, then $\hat{R}(h) \leq \exp\left\{-2\gamma^2 T\right\}$

Adaboost: do not need γ or T a priori

Training Error Proof: Preliminaries

Repeatedly expand the definition of the distribution.

$$D_{t+1}(i) = \frac{D_t(i) \exp\{-\alpha_t y_i h_t(x_i)\}}{Z_t}$$
(6)
$$\frac{D_{t-1}(i) \exp\{-\alpha_{t-1} y_i h_{t-1}(x_i)\} \exp\{-\alpha_t y_i h_t(x_i)\}}{Z_{t-1} Z_t}$$
(7)
$$\frac{\exp\{-y_i \sum_{s=1}^t \alpha_s h_s(x_i)\}}{m \prod_{s=1}^t Z_s}$$
(8)

- On round t weight of examples incorrectly classified by h_t is increased
- If x_i incorrectly classified by H_T, then x_i wrong on (weighted) majority of h_t's
 - If x_i incorrectly classified by H_T , then x_i must have large weight under D_T
 - But there can't be many of them, since total weight ≤ 1

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \left[y_i g(x_i) \le 0 \right]$$
(9)
(10)

Definition of training error

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \left[y_i g(x_i) \le 0 \right]$$

$$\leq \frac{1}{m} \sum_{i=1}^{m} \exp \left\{ -y_i g(x_i) \right\}$$
(10)

(11)

 $\mathbb{1}[u \leq 0] \leq \exp -u$ is true for all real u.

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \left[y_i g(x_i) \le 0 \right]$$

$$\leq \frac{1}{m} \sum_{i=1}^{m} \exp \left\{ -y_i g(x_i) \right\}$$
(10)
(11)

Final distribution
$$D_{t+1}(i)$$

$$D_{t+1}(i) = \frac{\exp\left\{-y_i \sum_{s=1}^{t} \alpha_s h_s(x_i)\right\}}{m \prod_{s=1}^{t} Z_s}$$
(12)

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \left[y_i g(x_i) \le 0 \right]$$

$$\leq \frac{1}{m} \sum_{i=1}^{m} \exp \left\{ -y_i g(x_i) \right\}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[m \prod_{t=1}^{T} Z_t \right] D_{T+1}(i)$$
(11)
(12)

m's cancel, D is a distribution

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} [y_i g(x_i) \le 0]$$

$$\le \frac{1}{m} \sum_{i=1}^{m} \exp\{-y_i g(x_i)\}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[m \prod_{t=1}^{T} Z_t \right] D_{T+1}(i)$$

$$= \prod_{t=1}^{T} Z_t$$
(12)

$$Z_{t} = \sum_{i=1}^{m} D_{t}(i) \exp\{-\alpha_{t} y_{i} h_{t}(x_{i})\}$$
(13)
= (14)
= (15)
= (16)

$$Z_t = \sum_{i=1}^m D_t(i) \exp\{-\alpha_t y_i h_t(x_i)\}$$
(13)
=
$$\sum_{i: \text{right}} D_t(i) \exp\{-\alpha_t\} + \sum_{i: \text{wrong}} D_t(i) \exp\{\alpha_t\}$$
(14)
= (15)
= (16)

$$Z_{t} = \sum_{i=1}^{m} D_{t}(i) \exp\{-\alpha_{t}y_{i}h_{t}(x_{i})\}$$

$$= \sum_{i:\text{right}} D_{t}(i) \exp\{-\alpha_{t}\} + \sum_{i:\text{wrong}} D_{t}(i) \exp\{\alpha_{t}\}$$

$$= (1 - \epsilon_{t}) \exp\{-\alpha_{t}\} + \epsilon_{t} \exp\{\alpha_{t}\}$$

$$= (15)$$

$$= (16)$$

$$Z_{t} = \sum_{i=1}^{m} D_{t}(i) \exp\{-\alpha_{t}y_{i}h_{t}(x_{i})\}$$

$$= \sum_{i:\text{right}} D_{t}(i) \exp\{-\alpha_{t}\} + \sum_{i:\text{wrong}} D_{t}(i) \exp\{\alpha_{t}\}$$

$$= (1 - \epsilon_{t}) \exp\{-\alpha_{t}\} + \epsilon_{t} \exp\{\alpha_{t}\}$$

$$= (1 - \epsilon_{t}) \sqrt{\frac{\epsilon_{t}}{1 - \epsilon_{t}}} + \epsilon_{t} \sqrt{\frac{1 - \epsilon_{t}}{\epsilon_{t}}}$$

$$(13)$$

Single Weak Learner

$$Z_t = (1 - \epsilon_t) \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} + \epsilon_t \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}$$
(13)

Normalization Product

$$\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2\sqrt{\epsilon_t (1 - \epsilon_t)} = \sqrt{1 - 4\left(\frac{1}{2} - \epsilon_t\right)^2}$$
(14)
(15)

Normalization Product

$$\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2\sqrt{\epsilon_t (1 - \epsilon_t)} = \sqrt{1 - 4\left(\frac{1}{2} - \epsilon_t\right)^2}$$
(13)
$$\leq \prod_{t=1}^{T} \exp\left\{-2\left(\frac{1}{2} - \epsilon_t\right)^2\right\}$$
(14)
(15)

Normalization Product

$$\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2\sqrt{\epsilon_t (1 - \epsilon_t)} = \sqrt{1 - 4\left(\frac{1}{2} - \epsilon_t\right)^2}$$
(13)
$$\leq \prod_{t=1}^{T} \exp\left\{-2\left(\frac{1}{2} - \epsilon_t\right)^2\right\}$$
(14)
$$= \exp\left\{-2\sum_{t=1}^{T} \left(\frac{1}{2} - \epsilon_t\right)^2\right\}$$
(15)

Generalization

VC Dimension $\leq 2(d+1)(T+1) \lg [(T+1)e]$

Margin-based Analysis

AdaBoost maximizes a linear program maximizes an L_1 margin, and the weak learnability assumption requires data to be linearly separable with margin 2γ

Practical Advantages of AdaBoost

fast

- simple and easy to program
- no parameters to tune (except T)
- flexible: can combine with any learning algorithm
- no prior knowledge needed about weak learner
- provably effective, provided can consistently find rough rules of thumb
 - shift in mind set: goal now is merely to find classifiers barely better than random guessing
- versatile
 - o can use with data that is textual, numeric, discrete, etc.
 - has been extended to learning problems well beyond binary classification

- performance of AdaBoost depends on data and weak learner
- consistent with theory, AdaBoost can fail if
- weak classifiers too complex
 - overfitting
- weak classifiers too weak ($\gamma_t
 ightarrow$ 0 too quickly)
 - underfitting
 - \circ low margins \rightarrow overfitting
- empirically, AdaBoost seems especially susceptible to uniform noise