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Dual Objective

Lagrange Multipliers

Introduce Lagrange variables αi ≥ 0, i ∈ [1,m] for each of the m
constraints (one for each data point).

L (w , b, α) =
1

2
||w ||2 −

m∑
i=1

αi [yi (w · xi + b)− 1] (1)
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Dual Objective

Solving Lagrangian

Weights

~w =
m∑
i=1

αiyi~xi (2)

Bias

0 =
m∑
i=1

αiyi (3)

Support Vector-ness

αi = 0 ∨ yi (w · xi + b) ≤ 1 (4)
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Dual Objective

Reparameterize in terms of α

max
~α

m∑
i=1

αi −
1

2

m∑
i=1

m∑
i=1

αiαjyiyj(~xi · ~xj) (5)
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Dual Objective

Strawman: Coordinate Descent

• Why not optimize one coordinate αi at a time?

• Constraints!

• So we’ll just minimize pairs (αi , αj) at a time
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Dual Objective

Outline for SVM Optimization (SMO)

1. Select two examples i , j

2. Get a learning rate η

3. Update αj

4. Update αi
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Algorithm Big Picture
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Algorithm Big Picture

Contrast with SG

• There’s a learning rate η that depends on the data

• Use the error of an example to derive update

• You update multiple α at once
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Algorithm Big Picture

Contrast with SG

• There’s a learning rate η that depends on the data

• Use the error of an example to derive update

• You update multiple α at once: if one goes up, the other should go
down because

∑
yiαi = 0
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Algorithm Big Picture

More details

• We enforce every αi < C (slackness)

• How do we know we’ve converged?

αi = 0⇒ yi (w · xi + b) ≥ 1 (6)

αi = C ⇒ yi (w · xi + b) ≤ 1 (7)

0 < αi < C ⇒ yi (w · xi + b) = 1 (8)

(Karush-Kuhn-Tucker Conditions)

• Keep checking (to some tolerance)
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The Algorithm

Step 1: Select i and j

• Find some i ∈ {1, . . .m} that violates KKT

• Choose j randomly from m − 1 other options

• You can do better (particularly for large datasets)

• Repeat until KKT conditions are met
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The Algorithm

Step 2: Optimize αj

1. Compute upper (H) and lower (L) bounds that ensure 0 < αj ≤ C .

yi 6= yj

L = max(0, αj − αi ) (9)

H = min(C ,C + αj − αi ) (10)

yi = yj

L = max(0, αi + αj − C ) (11)

H = min(C , αj + αi ) (12)

This is because the update for αi is based on yiyj (sign matters)
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The Algorithm

Step 2: Optimize αj

Compute errors for i and j

Ek ≡ f (xk)− yk (13)

and the learning rate (more similar, higher step size)

η = 2xi · xj − xi · xi − xj · xj (14)

for new value for αj

α∗
j = α

(old)
j −

yj(Ei − Ej)

η
(15)
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and the learning rate (more similar, higher step size)

η = 2xi · xj − xi · xi − xj · xj (14)

for new value for αj

α∗
j = α

(old)
j −

yj(Ei − Ej)

η
(15)

Similar to stochastic gradient, but with additional error term.

If α∗
j is

outside [L,H], clip it so that it is within the range.
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The Algorithm

Step 2: Optimize αj

Compute errors for i and j

Ek ≡ f (xk)− yk (13)

and the learning rate (more similar, higher step size)

η = 2xi · xj − xi · xi − xj · xj (14)

for new value for αj

α∗
j = α

(old)
j −

yj(Ei − Ej)

η
(15)

What if xi == xj?
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The Algorithm

Step 3: Optimize αi

Set αi :

α∗
i = α

(old)
i + yiyj

(
α
(old)
j − αj

)
(16)

This balances out the move that we made for αj .
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The Algorithm

Step 4: Optimize the threshold b

We need the KKT conditions to be satisfied for these two examples.

• If 0 < αi < C (support vector)

b = b1 = b−Ei − yi (α
∗
i −α

(old)
i )xi · xi − yj(α

∗
j −α

(old)
j )xi · xj (17)

• If 0 < αj < C (support vector)

b = b2 = b−Ej − yi (α
∗
i −α

(old)
i )xi · xj − yj(α

∗
j −α

(old)
j )xj · xj (18)

• If both αi and αj are at the bounds (well away from margin), then
anything between b1 and b2 works, so we set

b =
b1 + b2

2
(19)
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The Algorithm

Iterations / Details

• What if i doesn’t violate the KKT conditions?

• What if η ≥ 0?

• When do we stop?

Jordan Boyd-Graber | Boulder Solving SVMs (SMO Algorithms) | 17 of 19



The Algorithm

Iterations / Details

• What if i doesn’t violate the KKT conditions? Skip it!

• What if η ≥ 0?

• When do we stop?

Jordan Boyd-Graber | Boulder Solving SVMs (SMO Algorithms) | 17 of 19



The Algorithm

Iterations / Details

• What if i doesn’t violate the KKT conditions? Skip it!

• What if η ≥ 0? Skip it!

• When do we stop?

Jordan Boyd-Graber | Boulder Solving SVMs (SMO Algorithms) | 17 of 19



The Algorithm

Iterations / Details

• What if i doesn’t violate the KKT conditions? Skip it!

• What if η ≥ 0? Skip it!

• When do we stop? Until we go through α’s without changing
anything
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Recap

Recap

• SMO: Optimize objective function for two data points

• Convex problem: Will converge

• Relatively fast

• Gives good performance

• Next HW!

Jordan Boyd-Graber | Boulder Solving SVMs (SMO Algorithms) | 19 of 19


	Dual Objective
	Algorithm Big Picture
	The Algorithm
	Recap

