5 Department of Computer Science
 UNIVERSITY OF COLORADO BOULDER

Slack SVMs

Jordan Boyd-Graber
University of Colorado Boulder
LECTURE 8

Content Question

Administrivia Question

Slack Example

Decision function:

$$
w=\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{1}{4}
\end{array}\right] ; b=-\frac{1}{4}
$$

Slack Example

Decision function:
$w=\left[\begin{array}{c}-\frac{1}{4} \\ \frac{1}{4}\end{array}\right] ; b=-\frac{1}{4}$

- What are the support vectors?

Slack Example

Decision function:
$w=\left[\begin{array}{c}-\frac{1}{4} \\ \frac{1}{4}\end{array}\right] ; b=-\frac{1}{4}$

- What are the support vectors?
- Which have non-zero slack?

Slack Example

Decision function:
$w=\left[\begin{array}{c}-\frac{1}{4} \\ \frac{1}{4}\end{array}\right] ; b=-\frac{1}{4}$

- What are the support vectors?
- Which have non-zero slack?
- Compute ξ_{B}, ξ_{E}

Computing slack

$$
\begin{equation*}
y_{i}\left(\vec{w}_{i} \cdot x_{i}+b\right) \geq 1-\xi_{i} \tag{1}
\end{equation*}
$$

Computing slack

$$
\begin{equation*}
y_{i}\left(\vec{w}_{i} \cdot x_{i}+b\right) \geq 1-\xi_{i} \tag{1}
\end{equation*}
$$

Point B

$$
\begin{align*}
y_{B}\left(\vec{w}_{B} \cdot x_{B}+b\right) & = \tag{2}\\
-1(-0.25 \cdot-5+0.25 \cdot 1-0.25) & =-1.25 \tag{3}
\end{align*}
$$

Thus, $\xi_{B}=2.25$

Computing slack

$$
\begin{equation*}
y_{i}\left(\vec{w}_{i} \cdot x_{i}+b\right) \geq 1-\xi_{i} \tag{1}
\end{equation*}
$$

Point B

$$
\begin{align*}
y_{B}\left(\vec{w}_{B} \cdot x_{B}+b\right) & = \tag{2}\\
-1(-0.25 \cdot-5+0.25 \cdot 1-0.25) & =-1.25 \tag{3}
\end{align*}
$$

Thus, $\xi_{B}=2.25$

Point E

$$
\begin{align*}
y_{E}\left(\vec{w}_{E} \cdot x_{E}+b\right) & = \tag{4}\\
1(-0.25 \cdot 6+0.25 \cdot 3+-0.25) & =-1 \tag{5}
\end{align*}
$$

Thus, $\xi_{E}=2$

Slack Example

Decision function:

$$
w=\left[\begin{array}{l}
0 \\
2
\end{array}\right] ; b=-5
$$

Slack Example

Decision function:
$w=\left[\begin{array}{l}0 \\ 2\end{array}\right] ; b=-5$

- What are the support vectors?

Slack Example

Decision function:

$$
w=\left[\begin{array}{l}
0 \\
2
\end{array}\right] ; b=-5
$$

- What are the support vectors?
- Which have non-zero slack?

Slack Example

Decision function:

$$
w=\left[\begin{array}{l}
0 \\
2
\end{array}\right] ; b=-5
$$

- What are the support vectors?
- Which have non-zero slack?
- Compute ξ_{A}, ξ_{C}

Computing slack

$$
\begin{equation*}
y_{i}\left(\vec{w}_{i} \cdot x_{i}+b\right) \geq 1-\xi_{i} \tag{6}
\end{equation*}
$$

Computing slack

$$
\begin{equation*}
y_{i}\left(\vec{w}_{i} \cdot x_{i}+b\right) \geq 1-\xi_{i} \tag{6}
\end{equation*}
$$

Point A

$$
\begin{align*}
y_{A}\left(\vec{w}_{A} \cdot x_{A}+b\right) & = \tag{7}\\
1(0 \cdot-5+2 \cdot 0+-5) & =-5 \tag{8}
\end{align*}
$$

Thus, $\xi_{A}=6$

Computing slack

$$
\begin{equation*}
y_{i}\left(\vec{w}_{i} \cdot x_{i}+b\right) \geq 1-\xi_{i} \tag{6}
\end{equation*}
$$

Point A

$$
\begin{align*}
y_{A}\left(\vec{w}_{A} \cdot x_{A}+b\right) & = \tag{7}\\
1(0 \cdot-5+2 \cdot 0+-5) & =-5 \tag{8}
\end{align*}
$$

Thus, $\xi_{A}=6$
Point C

$$
\begin{align*}
y_{C}\left(\vec{w}_{C} \cdot x_{C}+b\right) & = \tag{9}\\
1(0 \cdot-5+2 \cdot 2+-5) & =-1 \tag{10}
\end{align*}
$$

Thus, $\xi_{C}=2$

Which one is better?

- Which decision boundary (wide / narrow) has the better objective?

Which one is better?

- Which decision boundary (wide / narrow) has the better objective?

$$
\begin{equation*}
\min _{w} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i} \tag{11}
\end{equation*}
$$

Which one is better?

$\frac{1}{2}\|w\|^{2}=\frac{1}{2}\left(\frac{-1}{4}^{2}+\frac{1}{4}^{2}\right)=0.0625$
(11)

$$
\begin{equation*}
\sum_{i} \xi_{i}=4.25 \tag{12}
\end{equation*}
$$

- Which decision boundary (wide / narrow) has the better objective?

$$
\begin{equation*}
\min _{w} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i} \tag{13}
\end{equation*}
$$

Which one is better?

$\frac{1}{2}\|w\|^{2}=0.0625$

$$
\begin{equation*}
\frac{1}{2}\|w\|^{2}=\frac{1}{2}\left(2^{2}\right)=2 \tag{11}
\end{equation*}
$$

- Which decision boundary (wide / narrow) has the better objective?

$$
\begin{equation*}
\min _{w} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i} \tag{15}
\end{equation*}
$$

Which one is better?

$$
\begin{equation*}
\frac{1}{2}\|w\|^{2}=0.0625 \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i} \xi_{i}=4.25 \tag{12}
\end{equation*}
$$

$$
\begin{align*}
\frac{1}{2}\|w\|^{2} & =2 \tag{13}\\
\sum_{i} \xi_{i} & =8 \tag{14}
\end{align*}
$$

- Which decision boundary (wide / narrow) has the better objective?

$$
\begin{equation*}
\min _{w} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i} \tag{15}
\end{equation*}
$$

- In this case it doesn't matter. Common C values: $1.0, \frac{1}{m}$

Importance of C

- Need to do cross-validation to select C
- Don't trust default values
- Look at values with high ξ; are they bad data?

Importance of C

- Need to do cross-validation to select C
- Don't trust default values
- Look at values with high ξ; are they bad data?
- Next time: how to find w

