

Classification: The PAC Learning Framework

Machine Learning: Jordan Boyd-Graber University of Colorado Boulder

LECTURE 5B

Content Questions

Quiz!

Admin Questions

Admin Questions

Admin Questions

PAC Learnability: Rectangles

Is the hypothesis class of axis-aligned rectangles PAC learnable?

PAC Learnability: Rectangles

Is the hypothesis class of axis-aligned rectangles PAC learnable?
A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM (JACM), 36(4):929?965, 1989

What's the learning algorithm

What's the learning algorithm

Call this h_{S}, which we learned from data. $h_{s} \in c$

Proof

Proof

Let $c \equiv[b, t] \times[I, r]$.

Proof

Let $c \equiv[b, t] \times[I, r] . \quad$ By construction, $h_{S} \in c$, so it can only give false negatives.

Proof

Let $c \equiv[b, t] \times[I, r]$. By construction, $h_{S} \in c$, so it can only give false negatives. The region of error is precisely $c \backslash h_{S}$.

Proof

Let $c \equiv[b, t] \times[I, r]$. By construction, $h_{s} \in c$, so it can only give false negatives. The region of error is precisely $c \backslash h_{S}$. WLOG, assume $P(R) \geq \epsilon$.

Proof

Let $c \equiv[b, t] \times[I, r]$. By construction, $h_{S} \in c$, so it can only give false negatives. The region of error is precisely $c \backslash h_{S}$. WLOG, assume $P(R) \geq \epsilon$. Consider rectangles $R_{1} \ldots R_{4}$:

Proof

Let $c \equiv[b, t] \times[I, r]$. By construction, $h_{S} \in c$, so it can only give false negatives. The region of error is precisely $c \backslash h_{S}$. WLOG, assume $P(R) \geq \epsilon$. Consider rectangles $R_{1} \ldots R_{4}$:

We get a bad h_{S} only if we have an observation fall in this region. So let's bound this probability.

Bounds

$$
\begin{align*}
\operatorname{Pr}[\text { error }] & =\operatorname{Pr}\left[\uplus_{i=1}^{4} x \notin R_{i}\right] \tag{1}\\
& \leq \sum_{i=1}^{4} \operatorname{Pr}\left[x \notin R_{i}\right] \tag{2}\\
& =\sum_{i=1}^{4}\left(1-P\left(R_{i}\right)\right)^{m} \tag{3}
\end{align*}
$$

Bounds

$$
\begin{align*}
\operatorname{Pr}[\text { error }] & =\operatorname{Pr}\left[\uplus_{i=1}^{4} x \notin R_{i}\right] \tag{1}\\
& \leq \sum_{i=1}^{4} \operatorname{Pr}\left[x \notin R_{i}\right] \tag{2}\\
& =\sum_{i=1}^{4}\left(1-P\left(R_{i}\right)\right)^{m} \tag{3}
\end{align*}
$$

If we assume that $P\left(R_{i}\right) \geq \frac{\epsilon}{4}$, then

$$
\begin{equation*}
\operatorname{Pr}[\text { error }] \leq 4\left(1-\frac{\epsilon}{4}\right)^{m} \leq 4 \cdot \exp \left\{-\frac{m \epsilon}{4}\right\} \tag{4}
\end{equation*}
$$

Bounds

$$
\begin{align*}
\operatorname{Pr}[\text { error }] & =\operatorname{Pr}\left[\uplus_{i=1}^{4} x \notin R_{i}\right] \tag{1}\\
& \leq \sum_{i=1}^{4} \operatorname{Pr}\left[x \notin R_{i}\right] \tag{2}\\
& =\sum_{i=1}^{4}\left(1-P\left(R_{i}\right)\right)^{m} \tag{3}
\end{align*}
$$

If we assume that $P\left(R_{i}\right) \geq \frac{\epsilon}{4}$, then

$$
\begin{equation*}
\operatorname{Pr}[\text { error }] \leq 4\left(1-\frac{\epsilon}{4}\right)^{m} \leq 4 \cdot \exp \left\{-\frac{m \epsilon}{4}\right\} \tag{4}
\end{equation*}
$$

Solving for m gives

$$
\begin{equation*}
m \geq \frac{4 \ln 4 / \delta}{\epsilon} \tag{5}
\end{equation*}
$$

Concept Learning

Are Boolean conjunctions PAC learnable? Think of every feature as a Boolean variable; in a given example the variable is given the value 1 if its corresponding feature appears in the examples and 0 otherwise. In this way, if the number of measured features is n the concept is represented as a Boolean function $c:\{0,1\} \mapsto\{0,1\}$. For example we could define a chair as something that has four legs and you can sit on and is made of wood. Can you learn such a conjunction concept over n variables?

Algorithm

Algorithm

Start with

$$
\begin{equation*}
h=\bar{x}_{1} x_{1} \bar{x}_{2} x_{2} \ldots \bar{x}_{n} x_{n} \tag{6}
\end{equation*}
$$

Algorithm

Start with

$$
\begin{equation*}
h=\bar{x}_{1} x_{1} \bar{x}_{2} x_{2} \ldots \bar{x}_{n} x_{n} \tag{6}
\end{equation*}
$$

For every positive example you see, remove the negation of all dimensions present in that example.

Algorithm

Start with

$$
\begin{equation*}
h=\bar{x}_{1} x_{1} \bar{x}_{2} x_{2} \ldots \bar{x}_{n} x_{n} \tag{6}
\end{equation*}
$$

For every positive example you see, remove the negation of all dimensions present in that example. Example: 10001, 11001, 10000, 11000

Algorithm

Start with

$$
\begin{equation*}
h=\bar{x}_{1} x_{1} \bar{x}_{2} x_{2} \ldots \bar{x}_{n} x_{n} \tag{6}
\end{equation*}
$$

For every positive example you see, remove the negation of all dimensions present in that example. Example: 10001, 11001, 10000, 11000

- After first example, $x_{1} \bar{x}_{2} \bar{x}_{3} \bar{x}_{4} \overline{x_{5}}$

Algorithm

Start with

$$
\begin{equation*}
h=\bar{x}_{1} x_{1} \bar{x}_{2} x_{2} \ldots \bar{x}_{n} x_{n} \tag{6}
\end{equation*}
$$

For every positive example you see, remove the negation of all dimensions present in that example. Example: 10001, 11001, 10000, 11000

- After first example, $x_{1} \bar{x}_{2} \bar{x}_{3} \bar{x}_{4} \bar{x}_{5}$
- After last example, $x_{1} \bar{x}_{3} \bar{x}_{4}$

Observations

Observations

- Having seen no data, h says no to everything
- Our algorithm can be two specific. It might not say yes when it should.

Observations

- Having seen no data, h says no to everything
- Our algorithm can be two specific. It might not say yes when it should.
- We make an error on a literal if we've never seen it before (there are $2 n$ literals: x_{1}, \bar{x}_{1})

Bounds

Bounds

Let $p(z)$ be the probability that our concept returns a positive example in which literal z is false.

$$
\begin{equation*}
R(h) \leq \sum_{z} p(z) \tag{7}
\end{equation*}
$$

A literal z is bad if $p(z) \geq \frac{\epsilon}{2 n}$.

Bounds

Let $p(z)$ be the probability that our concept returns a positive example in which literal z is false.

$$
\begin{equation*}
R(h) \leq \sum_{z} p(z) \tag{7}
\end{equation*}
$$

A literal z is bad if $p(z) \geq \frac{\epsilon}{2 n}$.
If h has no bad literals, then h will have error less than ϵ.

Solving for number of examples

Solving for number of examples

$$
\begin{equation*}
m \geq \frac{2 n}{\epsilon}\left(\ln 2 n+\ln \frac{1}{\delta}\right) \tag{8}
\end{equation*}
$$

3-DNF

3-DNF

Not efficiently learnable unless $P=N P$.

