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Quiz!
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PAC Learnability: Rectangles

Is the hypothesis class of axis-aligned rectangles PAC learnable?

A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability and
the Vapnik-Chervonenkis dimension. Journal of the ACM (JACM),
36(4):929?965, 1989
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What’s the learning algorithm

Call this hS , which we learned from data. hs ∈ c
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Proof
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Proof

Let c ≡ [b, t]× [l , r ]. By construction, hS ∈ c, so it can only give false
negatives. The region of error is precisely c \hS . WLOG, assume
P(R)≥ ε. Consider rectangles R1 . . .R4:

We get a bad hS only if we have an observation fall in this region. So let’s
bound this probability.
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Bounds

Pr[error ] =Pr[ä4
i=1x 6∈Ri ] (1)

≤
4
∑
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Solving for m gives
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Concept Learning

Are Boolean conjunctions PAC learnable? Think of every feature as a
Boolean variable; in a given example the variable is given the value 1 if its
corresponding feature appears in the examples and 0 otherwise. In this way,
if the number of measured features is n the concept is represented as a
Boolean function c : {0,1} 7→ {0,1}. For example we could define a chair as
something that has four legs and you can sit on and is made of wood. Can
you learn such a conjunction concept over n variables?
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Algorithm

Start with
h = x̄1x1x̄2x2 . . . x̄nxn (6)

For every positive example you see, remove the negation of all dimensions
present in that example. Example: 10001, 11001, 10000, 11000

• After first example, x1x̄2x̄3x̄4x̄5

• After last example, x1x̄3x̄4
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Observations

• Having seen no data, h says no to everything

• Our algorithm can be two specific. It might not say yes when it should.

• We make an error on a literal if we’ve never seen it before (there are 2n
literals: x1, x̄1)
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Bounds

Let p(z) be the probability that our concept returns a positive example in
which literal z is false.

R(h)≤
∑

z

p(z) (7)

A literal z is bad if p(z)≥ ε
2n .

If h has no bad literals, then h will have error less than ε.
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Solving for number of examples

m≥
2n

ε

�

ln2n + ln
1

δ

�

(8)
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3-DNF

Not efficiently learnable unless P = NP.
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