



Slides adapted from William Cohen

## Classification: Logistic Regression from Data

Machine Learning: Jordan Boyd-Graber University of Colorado Boulder

$$P(Y=0|X) = \frac{1}{1 + \exp\left[\beta_0 + \sum_i \beta_i X_i\right]}$$
(1)  
$$P(Y=1|X) = \frac{\exp\left[\beta_0 + \sum_i \beta_i X_i\right]}{1 + \exp\left[\beta_0 + \sum_i \beta_i X_i\right]}$$
(2)

- Discriminative prediction: p(y|x)
- Classification uses: ad placement, spam detection
- What we didn't talk about is how to learn  $\beta$  from data

$$\mathscr{L} \equiv \ln p(Y|X,\beta) = \sum_{j} \ln p(y^{(j)}|x^{(j)},\beta)$$

$$= \sum_{j} y^{(j)} \left(\beta_0 + \sum_{i} \beta_i x_i^{(j)}\right) - \ln \left[1 + \exp\left(\beta_0 + \sum_{i} \beta_i x_i^{(j)}\right)\right]$$
(3)
(4)

Initialize a vector B to be all zeros

**2** For *t* = 1,...,*T* 

- For each example  $\vec{x}_i$ ,  $y_i$  and feature *j*:
  - Compute  $\pi_i \equiv \Pr(y_i = 1 | \vec{x_i})$
  - Set  $\beta[j] = \beta[j]' + \lambda(y_i \pi_i)x_i$
- **3** Output the parameters  $\beta_1, \ldots, \beta_d$ .

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
  
$$\vec{\beta} = \langle \beta_{bias} = 0, \beta_A = 0, \beta_B = 0, \beta_C = 0, \beta_D = 0 \rangle$$

$$y_2 = \mathbf{0}$$
$$\mathbf{B} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D}$$

You first see the positive example. First, compute  $\pi_1$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

| <i>y</i> <sub>1</sub> = <b>1</b>     | <i>y</i> <sub>2</sub> = <b>0</b> |
|--------------------------------------|----------------------------------|
| ААААВВС                              | BCCCDDDD                         |
| (Assume step size $\lambda = 1.0.$ ) |                                  |

You first see the positive example. First, compute  $\pi_1$  $\pi_1 = \Pr(y_1 = 1 | \vec{x_1}) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} =$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

| <i>y</i> <sub>1</sub> =1             | <i>y</i> <sub>2</sub> = <b>0</b> |
|--------------------------------------|----------------------------------|
| AAABBBC                              | BCCCDDDD                         |
| (Assume step size $\lambda = 1.0.$ ) |                                  |

You first see the positive example. First, compute  $\pi_1$  $\pi_1 = \Pr(y_1 = 1 | \vec{x_1}) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} = \frac{\exp 0}{\exp 0 + 1} = 0.5$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

*y*<sub>2</sub> =**0** B C C C D D D D

 $\pi_1 = 0.5$  What's the update for  $\beta_{bias}$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_2 = \mathbf{0}$ BCCCDDDD

What's the update for  $\beta_{bias}$ ?  $\beta_{bias} = \beta'_{bias} + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,bias} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$  $y_2 = 0$ A A A A B B B C<br/>(Assume step size  $\lambda = 1.0.$ )B C C C D D D D

What's the update for  $\beta_{bias}$ ?  $\beta_{bias} = \beta'_{bias} + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,bias} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0 = 0.5$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

*y*<sub>2</sub> =**0** B C C C D D D D

What's the update for  $\beta_A$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

*y*<sub>2</sub> =**0** B C C C D D D D

What's the update for  $\beta_A$ ?  $\beta_A = \beta'_A + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,A} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 4.0$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

y<sub>2</sub> =**0** BCCCDDDD

What's the update for  $\beta_A$ ?  $\beta_A = \beta'_A + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,A} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 4.0 = 2.0$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

*y*<sub>2</sub> =**0** B C C C D D D D

What's the update for  $\beta_B$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

*y*<sub>2</sub> =**0** BCCCDDDD

What's the update for  $\beta_B$ ?  $\beta_B = \beta'_B + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,B} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 3.0$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_2 = 0$ BCCCDDDD

What's the update for  $\beta_B$ ?  $\beta_B = \beta'_B + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,B} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 3.0$ =1.5

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

*y*<sub>2</sub> =**0** B C C C D D D D

What's the update for  $\beta_C$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$  $y_2 = 0$ A A A A B B B C<br/>(Assume step size  $\lambda = 1.0.$ )B C C C D D D D

What's the update for  $\beta_C$ ?  $\beta_C = \beta'_C + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,C} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$  $y_2 = 0$ A A A A B B B C<br/>(Assume step size  $\lambda = 1.0.$ )B C C C D D D D

What's the update for  $\beta_C$ ?  $\beta_C = \beta'_C + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,C} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0 = 0.5$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

*y*<sub>2</sub> =**0** B C C C D D D D

What's the update for  $\beta_D$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

*y*<sub>2</sub> =**0** BCCCDDDD

What's the update for  $\beta_D$ ?  $\beta_D = \beta'_D + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,D} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 0.0$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$  $y_2 = 0$ A A A A B B B C<br/>(Assume step size  $\lambda = 1.0.$ )B C C

*y*<sub>2</sub> =**0** BCCCDDDD

What's the update for  $\beta_D$ ?  $\beta_D = \beta'_D + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,D} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 0.0 = 0.0$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

*y*<sub>2</sub> =**0** B C C C D D D D

Now you see the negative example. What's  $\pi_2$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size  $\lambda = 1.0.$ )  $y_2 = 0$ B C C C D D D D

Now you see the negative example. What's  $\pi_2$ ?  $\pi_2 = \Pr(y_2 = 1 | \vec{x_2}) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} = \frac{\exp[.5 + 1.5 + 1.5 + 0]}{\exp[.5 + 1.5 + 1.5 + 0] + 1} =$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size  $\lambda = 1.0.$ )  $y_2 = 0$ B C C C D D D D

Now you see the negative example. What's  $\pi_2$ ?  $\pi_2 = \Pr(y_2 = 1 | \vec{x_2}) = \frac{\exp \beta^{T} x_i}{1 + \exp \beta^{T} x_i} = \frac{\exp[.5 + 1.5 + 1.5 + 0]}{\exp[.5 + 1.5 + 1.5 + 0] + 1} = 0.97$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

*y*<sub>1</sub> =**1** 

A A A A B B B C (Assume step size  $\lambda = 1.0.$ ) *y*<sub>2</sub> =**0** B C C C D D D D

Now you see the negative example. What's  $\pi_2$ ?  $\pi_2 = 0.97$ What's the update for  $\beta_{bias}$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

*y*<sub>2</sub> **=0** B C C C D D D D

What's the update for  $\beta_{bias}$ ?  $\beta_{bias} = \beta'_{bias} + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,bias} = 0.5 + 1.0 \cdot (0.0 - 0.97) \cdot 1.0$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$  $y_2 = 0$ A A A A B B B C<br/>(Assume step size  $\lambda = 1.0.$ )B C C

*y*<sub>2</sub> =**0** B C C C D D D D

What's the update for  $\beta_{bias}$ ?  $\beta_{bias} = \beta'_{bias} + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,bias} = 0.5 + 1.0 \cdot (0.0 - 0.97) \cdot 1.0 = -0.47$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

*y*<sub>2</sub> =**0** B C C C D D D D

What's the update for  $\beta_A$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

*y*<sub>2</sub> =**0** B C C C D D D D

What's the update for  $\beta_A$ ?  $\beta_A = \beta'_A + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,A} = 2.0 + 1.0 \cdot (0.0 - 0.97) \cdot 0.0$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

*y*<sub>2</sub> =**0** B C C C D D D D

What's the update for  $\beta_A$ ?  $\beta_A = \beta'_A + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,A} = 2.0 + 1.0 \cdot (0.0 - 0.97) \cdot 0.0 = 2.0$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

*y*<sub>2</sub> =**0** B C C C D D D D

What's the update for  $\beta_B$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

*y*<sub>2</sub> **=0** B C C C D D D D

What's the update for  $\beta_B$ ?  $\beta_B = \beta'_B + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,B} = 1.5 + 1.0 \cdot (0.0 - 0.97) \cdot 1.0$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

*y*<sub>2</sub> =**0** B C C C D D D D

What's the update for  $\beta_B$ ?  $\beta_B = \beta'_B + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,B} = 1.5 + 1.0 \cdot (0.0 - 0.97) \cdot 1.0 = 0.53$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

*y*<sub>2</sub> =**0** B C C C D D D D

What's the update for  $\beta_C$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

*y*<sub>2</sub> **=0** B C C C D D D D

What's the update for  $\beta_C$ ?  $\beta_C = \beta'_C + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,C} = 0.5 + 1.0 \cdot (0.0 - 0.97) \cdot 3.0$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$  $y_2 = 0$ A A A A B B B C<br/>(Assume step size  $\lambda = 1.0.$ )B C C C D D D D

What's the update for  $\beta_C$ ?  $\beta_C = \beta'_C + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,C} = 0.5 + 1.0 \cdot (0.0 - 0.97) \cdot 3.0 = -2.41$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

*y*<sub>2</sub> =**0** B C C C D D D D

What's the update for  $\beta_D$ ?

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

*y*<sub>2</sub> =**0** B C C C D D D D

What's the update for  $\beta_D$ ?  $\beta_D = \beta'_D + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,D} = 0.0 + 1.0 \cdot (0.0 - 0.97) \cdot 4.0$ 

$$\beta[j] = \beta[j] + \lambda(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

*y*<sub>2</sub> =**0** B C C C D D D D

What's the update for  $\beta_D$ ?  $\beta_D = \beta'_D + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,D} = 0.0 + 1.0 \cdot (0.0 - 0.97) \cdot 4.0 = -3.88$  • You can do your normal update

- You can do your normal update
- Then

$$\beta_j = \beta'_j - \lambda 2\mu \beta_j = \beta'_j \cdot (1 - 2\lambda\mu)$$
(5)

- You can do your normal update
- Then

$$\beta_j = \beta'_j - \lambda 2\mu \beta_j = \beta'_j \cdot (1 - 2\lambda\mu)$$
(5)

• Doesn't depend on X or Y. Just makes all your weights smaller

- You can do your normal update
- Then

$$\beta_j = \beta'_j - \lambda 2\mu \beta_j = \beta'_j \cdot (1 - 2\lambda\mu)$$
(5)

- Doesn't depend on X or Y. Just makes all your weights smaller
- But difficult to update every feature every time (if there are many features)

- You can do your normal update
- Then

$$\beta_j = \beta'_j - \lambda 2\mu \beta_j = \beta'_j \cdot (1 - 2\lambda\mu)$$
(5)

- Doesn't depend on X or Y. Just makes all your weights smaller
- But difficult to update every feature every time (if there are many features)
- Following this up, we note that we can perform *m* successive "regularization" updates by letting  $\beta_j = \beta'_j \cdot (1 2\lambda\mu)^{m_j}$

## **Basic Idea**

Don't perform regularization updates for zero-valued  $x_j$ 's, but instead to simply keep track of how many such updates would need to be performed to update  $\beta_j$ 

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

You first see the positive example.  $\pi_1$  is still 0.5.

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_i}$$
  
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

You first see the positive example.  $\pi_1$  is still 0.5. What's the update for  $\beta_{bias}$ ?

$$\beta[j] = (\beta[j]' + \lambda(y - p)x_i) \cdot (1 - 2\lambda\mu)^{m_j}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

What's the update for 
$$\beta_{bias}$$
?  
 $\beta_{bias} = \left(\beta'_{bias} + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,bias}\right) \left(1 - 2 \cdot \lambda \cdot \mu\right)^{m_{bias}} = (0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0) \left(1 - 2 \cdot 1.0 \cdot \frac{1}{4}\right)^1$ 

$$\beta[j] = (\beta[j]' + \lambda(y - p)x_i) \cdot (1 - 2\lambda\mu)^{m_j}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

What's the update for 
$$\beta_{bias}$$
?  
 $\beta_{bias} = \left(\beta'_{bias} + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,bias}\right) \left(1 - 2 \cdot \lambda \cdot \mu\right)^{m_{bias}} = (0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0) \left(1 - 2 \cdot 1.0 \cdot \frac{1}{4}\right)^1 = 0.25$ 

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

What's the update for  $\beta_A$ ?

$$\beta[j] = (\beta[j]' + \lambda(y - p)x_i) \cdot (1 - 2\lambda\mu)^{m_j}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

What's the update for 
$$\beta_A$$
?  
 $\beta_A = (\beta'_A + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,A}) (1 - 2 \cdot \lambda \cdot \mu)^{m_A} = (0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 4.0) (1 - 2 \cdot 1.0 \cdot \frac{1}{4})^1$ 

$$\beta[j] = (\beta[j]' + \lambda(y - p)x_i) \cdot (1 - 2\lambda\mu)^{m_j}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

What's the update for  $\beta_A$ ?  $\beta_A = (\beta'_A + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,A}) (1 - 2 \cdot \lambda \cdot \mu)^{m_A} = (0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 4.0) (1 - 2 \cdot 1.0 \cdot \frac{1}{4})^1 = 1.0$ 

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

What's the update for  $\beta_B$ ?

$$\beta[j] = (\beta[j]' + \lambda(y - p)x_i) \cdot (1 - 2\lambda\mu)^{m_j}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

What's the update for 
$$\beta_B$$
?  
 $\beta_B = (\beta'_B + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,B}) (1 - 2 \cdot \lambda \cdot \mu)^{m_B} = (0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 3.0) (1 - 2 \cdot 1.0 \cdot \frac{1}{4})^1$ 

$$\beta[j] = (\beta[j]' + \lambda(y - p)x_i) \cdot (1 - 2\lambda\mu)^{m_j}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

What's the update for 
$$\beta_B$$
?  
 $\beta_B = (\beta'_B + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,B}) (1 - 2 \cdot \lambda \cdot \mu)^{m_B} = (0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 3.0) (1 - 2 \cdot 1.0 \cdot \frac{1}{4})^1 = 0.75$ 

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

What's the update for  $\beta_C$ ?

$$\beta[j] = (\beta[j]' + \lambda(y - p)x_i) \cdot (1 - 2\lambda\mu)^{m_j}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

What's the update for 
$$\beta_C$$
?  
 $\beta_C = (\beta'_C + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,C}) (1 - 2 \cdot \lambda \cdot \mu)^{m_C} = (0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0) (1 - 2 \cdot 1.0 \cdot \frac{1}{4})^1$ 

$$\beta[j] = (\beta[j]' + \lambda(y - p)x_i) \cdot (1 - 2\lambda\mu)^{m_j}$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

What's the update for 
$$\beta_C$$
?  
 $\beta_C = (\beta'_C + \lambda \cdot (y_1 - \pi_1) \cdot x_{1,C}) (1 - 2 \cdot \lambda \cdot \mu)^{m_C} = (0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0) (1 - 2 \cdot 1.0 \cdot \frac{1}{4})^1 = 0.25$ 

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

What's the update for  $\beta_D$ ?

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

What's the update for  $\beta_D$ ? We don't care: leave it for later.

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\beta = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

$$y_1 = 1$$
A A A A B B B C
Assume step size  $\lambda = 1.0$  and  $\mu = \frac{1}{4}$ .
$$y_2 = 0$$
B C C C D D D D

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C Assume step size  $\lambda = 1.0$  and  $\mu = \frac{1}{4}$ .  $y_2 = 0$ B C C C D D D D

Now you see the negative example. What's  $\pi_2$ ?

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C Assume step size  $\lambda = 1.0$  and  $\mu = \frac{1}{4}$ .

Now you see the negative example. What's  $\pi_2$ ?  $\pi_2 = \Pr(y_2 = 1 | \vec{x_2}) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} = \frac{\exp[.25 + 0.75 + 0.75 + 0]}{\exp[.25 + 0.75 + 0.75 + 0] + 1} =$ 

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

Now you see the negative example. What's  $\pi_2$ ?  $\pi_2 = \Pr(y_2 = 1 | \vec{x_2}) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} = \frac{\exp[.25 + 0.75 + 0.75 + 0]}{\exp[.25 + 0.75 + 0.75 + 0] + 1} = 0.85$ 

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\beta = \langle.25, 1, 0.75, 0.25, 0\rangle$$

 $\pi_2 = 0.85$ What's the update for  $\beta_{bias}$ ?

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

What's the update for 
$$\beta_{bias}$$
?  
 $\beta_{bias} = \left(\beta'_{bias} + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,bias}\right) \left(1 - 2 \cdot \lambda \cdot \mu\right)^{m_{bias}} = (0.25 + 1.0 \cdot (0.0 - 0.85) \cdot 1.0) \left(1 - 2 \cdot 1.0 \cdot \frac{1}{4}\right)^1$ 

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

What's the update for 
$$\beta_{bias}$$
?  
 $\beta_{bias} = (\beta'_{bias} + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,bias}) (1 - 2 \cdot \lambda \cdot \mu)^{m_{bias}} = (0.25 + 1.0 \cdot (0.0 - 0.85) \cdot 1.0) (1 - 2 \cdot 1.0 \cdot \frac{1}{4})^1 = -0.30$ 

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

What's the update for  $\beta_A$ ?

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

What's the update for  $\beta_A$ ? We don't care: leave it for later.

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

What's the update for  $\beta_B$ ?

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

What's the update for 
$$\beta_B$$
?  
 $\beta_B = (\beta'_B + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,B}) (1 - 2 \cdot \lambda \cdot \mu)^{m_B} = (0.75 + 1.0 \cdot (0.0 - 0.85) \cdot 1.0) (1 - 2 \cdot 1.0 \cdot \frac{1}{4})^1$ 

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

What's the update for 
$$\beta_B$$
?  
 $\beta_B = (\beta'_B + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,B}) (1 - 2 \cdot \lambda \cdot \mu)^{m_B} = (0.75 + 1.0 \cdot (0.0 - 0.85) \cdot 1.0) (1 - 2 \cdot 1.0 \cdot \frac{1}{4})^1 = -0.05$ 

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

What's the update for  $\beta_C$ ?

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

What's the update for 
$$\beta_C$$
?  
 $\beta_C = (\beta'_C + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,C}) (1 - 2 \cdot \lambda \cdot \mu)^{m_C} = (0.25 + 1.0 \cdot (0.0 - 0.85) \cdot 3.0) (1 - 2 \cdot 1.0 \cdot \frac{1}{4})^1$ 

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

What's the update for 
$$\beta_C$$
?  
 $\beta_C = (\beta'_C + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,C}) (1 - 2 \cdot \lambda \cdot \mu)^{m_C} =$   
 $(0.25 + 1.0 \cdot (0.0 - 0.85) \cdot 3.0) (1 - 2 \cdot 1.0 \cdot \frac{1}{4})^1 = -1.15$ 

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

What's the update for  $\beta_D$ ?

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

What's the update for 
$$\beta_D$$
?  
 $\beta_D = (\beta'_D + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,D}) (1 - 2 \cdot \lambda \cdot \mu)^{m_D} = (0.0 + 1.0 \cdot (0.0 - 0.85) \cdot 4.0) (1 - 2 \cdot 1.0 \cdot \frac{1}{4})^2$ 

$$\beta[j] = (\beta[j]' + \lambda(y-p)x_i) \cdot (1-2\lambda\mu)^{m_j}$$
  
$$\vec{\beta} = \langle .25, 1, 0.75, 0.25, 0 \rangle$$

What's the update for 
$$\beta_D$$
?  
 $\beta_D = (\beta'_D + \lambda \cdot (y_2 - \pi_2) \cdot x_{2,D}) (1 - 2 \cdot \lambda \cdot \mu)^{m_D} =$   
 $(0.0 + 1.0 \cdot (0.0 - 0.85) \cdot 4.0) (1 - 2 \cdot 1.0 \cdot \frac{1}{4})^2 = -0.85$ 

- Multinomial logistic regression in sklearn (more than one option)
- Crafting effective features
- Preparation for third homework