
Static analysis of ReLU neural networks with
tropical polyhedra
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Abstract. This paper studies the problem of range analysis for feedfor-
ward neural networks, which is a basic primitive for applications such as
robustness of neural networks, compliance to specifications and reacha-
bility analysis of neural-network feedback systems. Our approach focuses
on ReLU (rectified linear unit) feedforward neural nets that present spe-
cific difficulties: approaches that exploit derivatives do not apply in gen-
eral, the number of patterns of neuron activations can be quite large
even for small networks, and convex approximations are generally too
coarse. In this paper, we employ set-based methods and abstract inter-
pretation that have been very successful in coping with similar difficulties
in classical program verification. We present an approach that abstracts
ReLU feedforward neural networks using tropical polyhedra. We show
that tropical polyhedra can efficiently abstract ReLU activation func-
tion, while being able to control the loss of precision due to linear com-
putations. We show how the connection between ReLU networks and
tropical rational functions can provide approaches for range analysis of
ReLU neural networks. We report on a preliminary evaluation of our
approach using a prototype implementation.

1 Introduction and related work

Neural networks are now widely used in numerous applications including speech
recognition, natural language processing, image segmentation, control and plan-
ning for autonomous systems. A central question is how to verify that they are
correct with respect to some specification. Beyond correctness, we are also inter-
ested in questions such as explainability and fairness, that can in turn be specified
as formal verification problems. Recently, the problem of verifying properties of
neural networks has been investigated extensively under a variety of contexts. A
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natural neural network analysis problem is that of range estimation, i.e. bound-
ing the values of neurons on the output layer, or some function of the output
neurons, given the range of neurons on the input layer. A prototypical applica-
tion of range estimation is the verification of the ACAS Xu - the next generation
collision avoidance system for autonomous aircrafts, which is implemented by a
set of neural networks [24]. Such a verification problem is translated into a range
estimation problem over these neural network wherein the input ranges concern
a set of possible scenarios and the outputs indicate the possible set of advisories
provided by the network [25].

Another prototypical application concerns the robustness of image classifica-
tion wherein we wish to analyze whether a classification label remains constant
for images in a neighborhood of a given image that is often specified using ranges
over a set of pixels. Robustness is akin to numerical stability analysis, and for
neural nets used as decision procedures (e.g. control of a physical apparatus), this
is a form of decision consistency. It is also linked to the existence or non-existence
of adversarial inputs, i.e. those inputs close to a well classified input data, that
dramatically change the classification [39], and may have dire consequences in
the real world [17].

Many formal methods approaches that have been successfully used in the
context of program verification seem to be successfully leveraged to the case of
neural net verification: proof-theoretic approaches, SMT techniques, constraint
based analyzers and abstract interpretation. In this paper, we are interested in
developing abstract interpretation [11] techniques for feedforward networks with
ReLU activation functions. ReLU feedforward networks can be seen as loop-free
programs with affine assignments and conditionals with affine guards, deciding
whether the corresponding neuron is activated or not. For researchers in program
analysis by abstract interpretation, this is a well known situation. The solutions
range from designing a scalable but imprecise analyses by convexifications of
the set of possible values of each neurons throughout all layers to designing
a potentially exponentially complex analysis by performing a fully disjunctive
analysis. In between, some heuristics have been successfully used in program
analysis, that may alleviate the burden of disjunctive analysis, see e.g. [29],
[10]. Among classical convex abstractions, the zones [30] are a nice and scalable
abstraction, successfully used in fully-fledged abstract interpretation based static
analyzers [8]. In terms of disjunctive analysis, a compact way to represent a large
class of disjunctions of zones are the tropical polyhedra, used for disjunctive
program analysis in e.g. [4,3]. Tropical polyhedra are, similarly to classical convex
polyhedra, defined by sets of affine inequalities but where the sum is replaced
by max operator and the multiplication is replaced by the addition.

Zones are interesting for synthesizing properties such as robustness of neural
networks used for classifying data. Indeed, classification relies on determining
which output neuron has the greatest score, translating immediately into zone-
like constraints. ReLU functions x 7→ max(0, x) are tropically linear, hence an
abstraction using tropical polyhedra will be exact. A direct verification of clas-
sification specifications can be done from a tropical polyhedron by computing
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the enclosing zone, see [4] and Section 2.1. In Figure 1, we pictured the graph
of the ReLU function y = max(x, 0) for x ∈ [−1, 1] (Figure 1a), and its abstrac-
tion by 1-ReLU in DeepPoly [37] (Figure 1b), by a zone (Figure 1c), and by
a tropical polyhedron (Figure 1d), which is exactly the graph of the function.
Unfortunately, (classical) linear functions are tropically non-linear. But contrar-
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Fig. 1: Abstractions of the ReLU graph on [−1, 1]

ily to program analysis where we generally discover the function to abstract
inductively on the syntax, we are here given the weights and biases for the full
network, allowing us to design much better abstractions than if directly using
the ones available from the program verification literature.

It was recently proved [43] that the class of functions computed by a feed-
forward neural network with ReLU activation functions is exactly the class of
rational tropical maps, at least when dealing with rational weights and biases.
It is thus natural to look for guaranteed approximants of these rational tropical
maps as abstractions.

Example 1 (Running example). Consider a neural network with 2 inputs x1 and
x2 given in [-1,1] and 2 outputs. The linear layer is defined by h1 = x1 − x2 − 1,
h2 = x1 +x2 +1 and followed by a ReLU layer with neurons y1 and y2 such that
y1 = max(0, x1 − x2 − 1) and y2 = max(0, x1 + x2 + 1).

The exact range for nodes (h1, h2) is depicted in Figure 2a in magenta (an
octagon here), and the exact range for the output layer is shown in Figure 2b in
cyan: (y1, y2) take the positive values of (h1, h2). In Figure 2c, the set of values
the linear node h1 can take as a function of x1, is represented in magenta. The
set of values of the output neuron y1 in function of x1 is depicted in Figure
2d, in cyan: when x1 is negative, h1 is negative as well, so y1 = 0 (this is the
horizontal cyan line on the left). When x1 is positive, the set of values y1 can
take is the positive part of the set of values h1 can take (pictured as the right
cyan triangle). The line plus triangle is a tropical polyhedron, as we will see in
Section 2.2.

We want to check two properties on this simple neural network:

(P1): the input is always classified as belonging to the class identified by neuron
y2, i.e. we always have y2 ≥ y1
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Fig. 2: Exact ranges for the neural net of Example 1 on [−1, 1]× [−1, 1]. (P2) is
the complement of the red square in Fig. 2d.

(P2): in the neighborhood [-0.25,0.25] of 0 for x1, whatever x2 in [-1,1], the output
y1 is never above threshold 0.5 (unsafe zone materialized in red in Fig. 2d)

(P2) is a robustness property. We see on the blue part of Figure 2b (resp. 2d)
that the first (resp. second) property is true.

As we will see in Section 3, our tropical polyhedron abstraction is going to
give the exact graph of y1 as a function of x1, in cyan again, Figure 3b.
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Fig. 3: Abstractions of a simple neural net on [−1, 1] × [−1, 1]. Dashed lines in
(b) enclose the classical convexification.

Therefore we will be able to prove robustness, i.e. (P2): the exact range
for y1 in cyan does not intersect the non complying states, in red. Note that
all classically convex abstractions, whatever their intricacies, will need to extend
the cyan zone up to the dashed line pictured in Figure 3b, to get the full triangle,
at the very least. This triangle is intersecting the red region making classically
convex abstractions unable to prove (P2).

Our tropical abstraction projected on the y2, y1 coordinates is not exact:
compare the exact range in cyan in Figure 2b with the abstraction in cyan in
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Figure 3a. However, the cyan region in Figure 3a is above the diagonal, which is
enough for proving (P1).

Still, the abstraction has an area 2.5 times larger than the exact range, due
to the tropical linearization of the tropical rational function y1. As with classical
linearizations, a workaround is to make this linearization local, through suitable
subdivisions of the input. We show in Figure 3c the tropical polyhedric abstrac-
tion obtained by subdividing x1 into two sub-intervals (namely [−1, 0] and [0, 1]):
the cyan part of the picture is much closer to the exact range (1.5 times the ex-
act area). Subdividing further as in Figure 3d naturally further improves the
precision (area 1.25 times the exact one).

As we will see in Section 2.2, tropical polyhedra are particular unions of zones:
the tropical polyhedra in cyan of Figures 3a and 3c are composed of just one zone,
but the tropical polyhedron in cyan in Figure 3d and the tropical polyhedron in
magenta in Figure 3c are the union of two zones. Finally, the tropical polyhedron
in magenta in Figure 3d is the union of four zones (generated by 9 extreme points,
or 5 constraints, obtained by joining results from the subdivisions of the inputs).

Contributions. Section 2 introduces the necessary background notions, in par-
ticular tropical polyhedra. We then describe the following contributions:

– Section 3 introduces our abstraction of (classical) affine functions from Rm

to Rn with tropical polyhedra. We fully describe internal and external rep-
resentations, extending the classical abstractions of assignments in the zone
abstract domain [30] or in the tropical polyhedra domain [4]. We prove cor-
rectness and equivalence of internal and external representations, allowing
the use of the double description method [2].

– Based on the analysis of one layer networks of Section 3, we show in Section
4 how to get to multi-layered networks.

– Finally, Section 6 describes our implementations in C++ and using polymake
[19] and presents some promising experiments. We discuss the cost and ad-
vantages of using the double description or of relying for further abstraction
on either internal or external representations of tropical polyhedra.

Related work. There exist many approaches to neural networks verification.
We concentrate here on methods and tools designed for at least range over-
approximation of ReLU feedforward networks.

It is natural to consider constraint based methods for encoding the ReLU
function and the combinatorics of activations in a ReLU feedforward neural net.

Determining the range of a ReLU feedforward neural net amounts to solving
min and max problems under sets of linear and ReLU constraints. This can be
solved either by global optimization techniques and branch and bound mecha-
nisms, see e.g. DeepGo [33]. The encoding of the activation combinatorics can
also be seen as mixed integer linear constraints, and MILP solver used for solv-
ing the range outer-approximation problem, see e.g. [40], [7], or both branch and
bound and MILP techniques, like Venus [9]. Similarly, Sherlock [14,15] performs
range analysis using optimization methods (MILP and a combination of local
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search and global branch-and-bound approach), and considers also neural nets
as controllers within a feedback loop. Finally, some of these constraint-based an-
alyzer improve the solution search by exploiting the geometry of the activation
regions, [27].

A second category of such approaches is based on SMT methods, more specif-
ically satisfiability modulo extensions of linear real arithmetic (encoding also
ReLU). The network is encoded in this logics and solvers provide answers to
queries, in particular range over-approximation and robustness, see e.g. Marabou
[26], extending Reluplex [25], and [16], [23].

Range estimation for ReLU activated feedforward neural nets can also be
performed using some of the abstract domains [12] that have been designed for
program analysis, and in particular convex domains for numerical program veri-
fication. These include zonotopes [20,35], especially considering that feedforward
neural nets with one hidden layer and ReLU activation functions are known to
be characterizable by zonotopes, see e.g. [43], polyhedra [37], and other sub-
polyhedric or convex abstractions like symbolic intervals [21] used in Neurify
[34] extending Reluval [41] or CROWN-IBP [42].

These abstractions allow to perform range estimation, i.e. to estimate outer
approximations of the values of the output neurons given a set of values for
the input neurons. They also allow to deal with robustness properties around
training data, by proving that the range of the neural net on a small set around
a training point gives the same class of outputs.

The main difficulty with these convex abstract domains is that they tend to
lose too much precision on (non-convex) ReLU functions. Several methods have
been proposed to cope with this phenomenon. The first one is to improve on
the abstraction of ReLU, in particular by combining the abstraction of several
ReLU functions on the same layer [36]. Another solution that has been proposed
in the literature is to combine abstraction and some level of combinatorial ex-
ploration of the possible neuron activations, in the line of disjunctive program
analysis [10,29]. RefineZono [38] implements methods combining polyhedric ab-
stract domains with MILP solvers for encoding ReLU activation and refining the
abstractions, NNENUM [6] uses combinations of zonotopes, stars sets with case
splitting methods, and Verinet [22] uses abstractions similar to the polyhedric
relaxations of DeepPoly, based on symbolic-interval propagation, with adaptive
refinement strategies.

2 Preliminaries and notations

2.1 Zones

The zone [30] abstraction represents restricted forms of affine invariants over
variables, bounds on variable differences. Let a n-dimensional variable x =
(x1, . . . , xn) ∈ Rn. The zone domain represents invariants of the form (

∧
1≤i,j≤n

xi−

xj ≤ ci,j) ∧ (
∧

1≤i≤n
ai ≤ xi ≤ bi). A convenient representation is using difference
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bound matrices, or DBM. In order to encode interval constraints seamlessly in
this matrix, a special variable x0, which is assumed to be a constant set to zero, is
added to x ∈ Rn. A DBM is then a (n+1)×(n+1) square matrix C = (cij), with
elements in R ∪ {+∞}, representing (concretization operator) the following set
of points in Rn: γ(C) = {(x1, . . . , xn) ∈ Rn| ∀i, j ∈ [0, n], xi−xj ≤ ci,j ∧x0 = 0}.

For a matrix C that has non-empty concretization, the closure denoted C∗

will be the smallest DBM for the partial order on matrices which represents
γ(C). Formally, a closed zone C = (cij) is such that: ∀k ∈ N,∀(i0, . . . , ik) ∈
[0, n]k+1, ci0,ik ≤ ci0,i1 + · · ·+ cik−1,ik , ∀i ∈ [0, j], ci,i = 0. Every constraint in a
closed zone saturates the set γ(C).

The best abstraction in the sense of abstract interpretation [12] of a non-
empty set S ⊂ Rn is the zone defined by the closed DBM: (c)ij = sup{xi −
xj | (x1, . . . , xn) ∈ S ∧ x0 = 0}.

Example 2. Consider the region defined as the union of the magenta and cyan
parts of Figure 3a in Example 1. It is a zone given by the inequalities: (−3 ≤
h1 ≤ 1)∧ (−1 ≤ h2 ≤ 3)∧ (−4 ≤ h1 − h2 ≤ 0), i.e. given by the following DBM:0 3 1

1 0 0
3 4 0


The octagon [31] abstraction is an extension of the zone abstraction, which

represents constraints of the form

(
∧

1≤i,j≤n

±xi ± xj ≤ ci,j) ∧ (
∧

1≤i≤n

ai ≤ xi ≤ bi)

A set of octagonal constraints can be encoded as a difference bound matrix,
similarly to the case of zones, but using a variable change to map octagonal
constraints on zone constraints. For each variable xi, two variables are considered
in the DBM encoding, that correspond respectively to +xi and −xi. Note that
unary (interval) constraints, such as xi ≤ bi, can be encoded directly as xi+xi ≤
2bi, so that no additional variable x0 is needed.

Example 3. The figure below right shows the exact range (the rotated square)
of h1, h2 of Example 1.

It is depicted in gray, as the intersection of two zones, one
in cyan, Z2, and one in olive, Z1. Z1 is the zone defined
in Example 2 and Z2 is the zone defined on variables
(h1,−h2) as follows:

(−3 ≤ h1 ≤ 1) ∧ (−1 ≤ h2 ≤ 3) ∧ (−2 ≤ h1 + h2 ≤ 2)
−2 0 1

2

h2

h1

−2
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2.2 Tropical polyhedra

Tropical polyhedra are similar to ordinary convex polyhedra. Both can be defined
either using affine constraints, known as the external description, or as convex
hulls of extremal points and rays, known as the internal description. The major
difference is the underlying algebra. Instead of using the classical ring R of co-
efficients, with ordinary sum and multiplications, we use the so-called max-plus
semiring Rmax. This semiring is based on the set Rmax = R ∪ {−∞}, equipped
with the addition x⊕ y := max(x, y) and the multiplication x⊗ y := x+ y. This
is almost a ring: we have neutral elements 1 := 0 for ⊗, and 0 := −∞ for ⊕,
and an inverse for ⊗ on Rmax\{0} but not for ⊕. The algebra also fits in with
the usual order ≤ on R, extended to Rmax: x ≤ y if and only if x⊕ y = y.

Tropical hyperplanes are similar to classical hyperplanes, and defined as the
set of points satisfying

⊕
1≤i≤k

ai ⊗ xi ⊕ c ≤
⊕

1≤i≤k
bi ⊗ xi ⊕ d.

Now, as in the classical case, tropical polyhedra will be given (externally)
as an intersection of n tropical hyperplanes, i.e. will be given as the location
of points in Rkmax satisfying n inequalities of the form of above. This can be
summarized using matrices A = (aij) and B = (bij), two n × k matrices with
entries in Rmax, and vectors of size k C and D as Ax⊕ C ≤ Bx⊕D.

Still similarly to the case of ordinary convex polyhedra, tropical polyhedra
can also be described internally, as generated by extremal generators (points,
rays). A tropical polyhedron can then be defined as the set of vectors x ∈ Rkmax
which can be written as a tropical affine combination of generators vi (the ex-
treme points) and rj (the extreme rays) as x =

⊕
i∈I

λiv
i⊕
⊕
j∈J

µjr
j with

⊕
i∈I

λi = 1.

Example 4 (Running example). Consider again the zone consisting of the union
of the magenta and cyan parts in Figure 3a. This is a tropical polyhedron, defined
externally by: max (h1,−3, h2,−1, h2, h1) ≤ max (1, h1, 3, h2, h1 + 4, h2).

It can also be defined internally by the extremal point A, B1 and B2 of
respective coordinates (−3,−1), (1, 1) and (−1, 3), depicted as dots in Figure 3a.
This means that the points z in this tropical polyhedron have coordinates (h1, h2)
with (h1, h2) = max (λ0 +A, λ1 +B1, λ2 +B2) with max(λ0, λ1, λ2) = 1 = 0,
i.e. all λis are negative or null, and one at least among the λis is zero.

For instance, when λ2 = −∞, z is on the tropical line linking A to B1:(
h1, h2

)
=
(
max(λ0 − 3, λ1 − 1),max(λ0 − 1, λ1 + 3)

)
(1)

with λ0, λ1 6= 0 and either λ0 = 0 or λ1 = 0. Suppose λ0 = 0, and suppose first
that λ1 ≤ −4: (h1, h2) = (−3,−1) which is point A. Suppose now −4 ≤ λ1 ≤ −2,
then (h1, h2) = (−3, λ1 + 3), which is the vertical line going from A to point
(−3, 1). Finally, suppose −2 ≤ λ1 ≤ 0, (h1, h2) = (λ1 − 1, λ1 + 3) which is the
diagonal going from (−3, 1) to B1. Similarly, one can show that the tropical line
going from B1 to B2 is given by fixing λ0 = −∞ and making vary λ1 and λ2. If
λ0 < 0 then λ1 = 0 and z is point B1.

Now, applying the ReLU operator, which is linear in the tropical algebra,
defines a tropical polyhedron with internal description given by ReLU (in each
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coordinate) of extreme points A, B1 and B2, i.e. A′ = (0, 0), B′1 = B1 = (1, 1)
and B′2 = (0, 3), see Figure 3a. Similarly, the zone which gives h1 as a function
of x1, see Figure 3b, can be seen as a tropical polyhedron with extreme points
(−1,−3), (1, 1) and (1,−1). Applying ReLU to the second coordinate of these
three extreme points gives three points (−1, 0), (1, 1) and (1, 0) which generate
the tropical polyhedron in cyan of Figure 3b.

It is also easy to see that after one subdivision, Figure 3c, the set of values
for (y1, y2) in cyan is a tropical polyhedron with three extreme points A′, B′1
and B2. After two subdivisions, Figure 3d, the values of y1 as a function of h1
is a tropical polyhedron with 4 generators (depicted as dots in Figure 3d). Note
that the tropical polyhedron of Figure 3d is the encoding of the union of two
zones, one zone being the classical convex hull of points (0, 0), (0, 1), (0.5, 1.5),
(1, 1.5) and (1, 1), and the other being the classical convex hull of points (0, 1),
(0, 2), (0.5, 2) and (0.5, 1.5).

All tropical polyhedra can thus be described both internally and externally,
and algorithms, although costly, can be used to translate an external description
into an internal description and vice-versa. This is at the basis of the double
description method for classical polyhedra [13] and for tropical polyhedra [2].
Double description is indeed useful when interpreting set-theoretic unions and
intersections, as in validation by abstract interpretation, see [13] again for the
classical case, and e.g. [4] for the tropical case: unions are easier to compute using
the extreme generator representation (the union of the convex hulls of sets of
points is the convex hull of the union of these sets of points) while intersections
are easier to compute using the external representation (the intersection of two
polyhedra given by sets of constraints is given by the concatenation of these sets
of constraints).

In the sequel, we will be using explicitly the max and (ordinary) + operators
in place of ⊕ and ⊗ for readability purposes.

2.3 From zone to tropical polyhedra and vice-versa

The following proposition characterizes the construction of tropical polyhedric
abstractions from zones. We show that a zone defined on n variables can be
expressed as the tropical convex hull of n+ 1 points.

Proposition 1 (Internal tropical representation of closed zones).
Let Hext ⊂ Rn be the n-dimensional zone defined by the conjunction of the

(n+1)2 inequalities
∧

0≤i,j≤n(xi−xj ≤ ci,j), where ∀i, j ∈ [0, n], ci,j ∈ R∪{+∞}.
Assume that this representation is closed, then Hext is equal to the tropical
polyhedron Hint defined, with internal representation, as the tropical convex hull
of the following extreme points (and no extreme ray):

A = (ai)1≤i≤n := (−c0,1, . . . ,−c0,n),

Bk = (bki)1≤i≤n := (ck,0 − ck,1, . . . , ck,0 − ck,n), k=1, . . ., n

The proof is given in Appendix A.
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Example 5. The zone of Example 2 is the tropical polyedron with the three
extreme generators A, B1 and B2 pictured in Figure 3a, as deduced from Propo-
sition 1 above.

Moreover, we can easily find the best zone (and also, hypercube) that outer
approximates a given tropical polyhedron, as follows [4]. Suppose we have p
extreme generators and rays for a tropical polyhedron H, A1, . . . , Ap, that we
put in homogeneous coordinates in Rn+1 by adding as last component 0 to
the coordinates of the extreme generators, and −∞ to the last component, for
extreme rays, as customary for identifying polyhedra with cones, see e.g. [18].

Proposition 2 ([4]). Let A be the matrix of generators for tropical polyhedron
H stripped out of rows consisting only of −∞ entries, and A/A the residuated
matrix which entries are (A/A)i,j = min

1≤k≤p
ai,k − aj,k. Then the smallest zone

containing H is given by the inequalities:

xi − xj ≥ (A/A)i,j for all i,j=1, . . . , n

(A/A)i,n+1 ≤ xi ≤ −(A/A)n+1,i for all i = 1, . . . , n

Example 6. Consider the graph of the ReLU function on [−1, 1], pictured in
Figure 1d. It has as generators the two extreme points A1 = (−1, 0) and A2 =
(1, 1) (the graph is the tropical segment from A1 to A2). Homogenizing the
coordinates and putting them in a matrix A (columns correspond to generators),
we have

A =

−1 1
0 1
0 0

 and (A/A) =

 0 −1 −1
0 0 0
−1 −1 0


meaning that the enclosing zone is given by −1 ≤ x− y ≤ 0, −1 ≤ x ≤ 1, 0 ≤
y ≤ 1, which is the zone depicted in Figure 1c.

2.4 Feedforward ReLU networks

Feedforward ReLU networks that we are considering in this paper are a succes-
sion of layers of neurons, input layer first, a given number of hidden layers and
then an output layer, each computing a certain affine transform followed by the
application of the ReLU activation function:

Definition 1. A n-neurons ReLU network layer L with m inputs is a function
Rm → Rn defined by, a weight matrix W ∈ Mn,m(R), a bias vector b ∈ Rn,
and an activation function ReLU : Rn → Rn given by ReLU(x1, . . . , xn) =
(max(x1, 0), . . . ,max(xn, 0)) so that for a given input x ∈ Rn, its output is
L(x) = ReLU(Wx+ b)

Definition 2. A multi-layer perceptron FN is given by a list of network layers
L0, ..., LN , where layers Li (i = 0, . . . , N − 1) are ni+1-neurons layers with ni
inputs. the action of FN on inputs is defined by composing the action of successive
layers: FN = LN ◦ ... ◦ L0
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With the above notations, there are N hidden layers of neurons in the net-
work. For each layer, we have Li : Rni → Rni+1 and we say that FN is a
n1 × n2 × ...× nN network.

3 Abstraction of linear maps

3.1 Zone-based abstraction

We consider in this section the problem of abstracting the graph Gf = {(x, y) |
y = f(x)} of a linear map f(x) = Wx + b with x ∈ [x1, x1] × . . . [xm, xm]
where W = (wi,j) is a n×m matrix and b a n-dimensional vector, by a tropical
polyhedron Hf . We will treat the case of multilayered networks in Section 4.

The difficulty is that linear maps in the classical sense are not linear maps
in the tropical sense, but are rather (generalized) tropical polynomials, hence
the exact image of a tropical polyhedron by a (classical) linear map is not in
general a tropical polyhedron. We begin by computing the best zone abstracting
Gf and then represent it by a tropical polyhedron, using the results of Section
2.3. We then show in Section 3.2 that we can improve results using an octagon
abstraction.

The tightest zone containing the image of a cube going through a linear layer
can be computed as follows:

Proposition 3 (Optimal approximation of a linear layer by a zone).
Let n,m ∈ N and f : Rm → Rn an affine transformation defined, for all

x ∈ Rm and i ∈ [1, n], by
(
f(x)

)
i

=
∑m
j=1 wi,jxj + bi. Let K ⊂ Rm be an

hypercube defined as K =
∏

1≤j≤m[xj , xj ], with xj , xj ∈ R. Then, the tightest

zone Hf of Rm × Rn containing S :=
{(
x, f(x)

) ∣∣∣x ∈ K
}

is the set of all

(x, y) ∈ Rm × Rn satisfying( ∧
1≤j≤m

xj ≤ xj ≤ xj
)
∧
( ∧

1≤i≤n

mi ≤ yi ≤Mi

)
∧
( ∧

1≤i1,i2≤n

yi1 − yi2 ≤ ∆i1,i2

)
∧
( ∧

1≤i≤n,1≤j≤m

mi − xj + δi,j ≤ yi − xj ≤Mi − xj − δi,j
)
,

where, for all i, i1, i2 ∈ [1, n] and j ∈ [1,m]:

mi =
∑
wi,j<0

wi,jxj +
∑
wi,j>0

wi,jxj + bi,

Mi =
∑
wi,j<0

wi,jxj +
∑
wi,j>0

wi,jxj + bi,

∆i1,i2 =
∑

wi1,j<wi2,j

(wi1,j − wi2,j)xj +
∑

wi1,j>wi2,j

(wi1,j − wi2,j)xj + (bi1 − bi2),

δi,j =


0, if wi,j ≤ 0

wi,j(xj − xj), if 0 ≤ wi,j ≤ 1

(xj − xj), if 1 ≤ wi,j
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Figure 4 shows the three different types of zones that over-approximate the
range of a scalar function f , with f(x) = λx+b, on an interval. When λ < 0, the
best that can be done is to abstract the graph of f by a square, we cannot encode
any dependency between f(x) and x: this corresponds to the case δi,j = 0 in
Proposition 3. The two other cases for the definition of δi,j are the two remaining
cases of Figure 4: when λ is between 0 and 1, this is the picture in the middle,
and when λ is greater than 1, this is the picture at the right hand side. As we
have seen in Proposition 1 and as we will see more in detail below in Theorem
1, these zones can be encoded as tropical polyhedra. Only the points A, B and
C are extreme points: D is not an extreme point of the polyhedron as it is on
the tropical segment [AC] (the blue, green and red dashed lines each represent
a tropical segment).

Fig. 4: The 3 cases for approximating the graph of an affine scalar function by a
tropical polyhedron, on domain [a, b].

For f : R2 → R, there are 6 cases, depending on the values of λ1 and λ2. In all
cases, these zones can be represented as tropical polyhedra using only 4 extreme
points and 4 inequalities (instead of 8 and 6 in the classical case), as we will see
in Theorem 1. Fig. 5 represents the resulting polyhedron for different values of
λ1 and λ2. Each figure shows the extreme points A, B1, B2 and C, the faces
of the polyhedron (in green), the tropical segments inside the polyhedron (in
red), and the actual graph of f(x) (in blue). We have the corresponding external
description in Theorem 1 below, which proof is given in Appendix E.

Theorem 1. The best zone abstraction Hf of of the graph Gf = {(x1, . . . , xm,
y1, . . . , yn) | xj ≤ xj ≤ xj , yi = fi(x1, . . . , xm)} ⊆ R+n of the linear function
f : Rm → Rn defined in Proposition 3 can be seen as the tropical polyhedron
defined externally with m+ n+ 1 inequalities, for all i ∈ [1, n] and j ∈ [1,m]:

max(x1 − x1, . . . , xm − xm, y1 −M1, . . . , yn −Mn) ≤ 0 (2)

max(0, y1 −M1 + δ1,j , . . . , yn −Mn + δn,j) ≤ xj − xj (3)

max(0, x1 − x1 + δi,1, . . . , xn − xn + δi,n, y1 − di,1, . . . , yn − di,n) ≤ yi −mi (4)

where dj1,j2 denotes the quantity ∆j1,j2 +mj2 for i1 and i2 in [1, n].
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Fig. 5: Over-approximation for λ1 = λ2 = 0.5 (left), λ1 = −0.5 and λ2 = 1.5
(middle), and λ1 = λ2 = 1.2 (right).

We have the matching internal representation in Theorem 2, which proof is given
in Appendix H.

Theorem 2. Hf can also be described, internally, as the tropical convex hull of
m+ n+ 1 extreme points:

A = (x1, . . . , xm,m1, . . . ,mn)

B1 = (x1, x2, . . . , xm,m1 + δ1,1, . . . ,mn + δn,1) . . .

Bm = (x1, . . . , xm−1, xm,m1 + δ1,m, . . . ,mn + δn,m)

C1 = (x1 + δ1,1, . . . , xm + δ1,m,M1, c1,2, . . . , c1,n) . . .

Cn = (x1 + δn,1, . . . , xm + δn,m, cn,1, . . . , cn,n−1,Mn)

where ci1,i2 = Mi1 −∆i1,i2 for i1 and i2 in [1, n].

Example 7 (Running example). Let us detail the computations for Example 1:
h1 = x1 − x2 − 1, h2 = x1 + x2 + 1. We have respectively, δ1,1 = 2, δ1,2 = 0,
δ2,1 = 2, δ2,2 = 2, ∆1,1 = 0, ∆1,2 = 0, ∆2,1 = 4, ∆2,2 = 0, d1,1 = −3, d1,2 = −1,
d2,1 = 1, d2,2 = −1, m1 = −3, m2 = −1, M1 = 1 and M2 = 3. Hence the
external description for the tropical polyhedron relating values of x1, x2, h1
and h2 are: max(x1 − 1, x2 − 1, h1 − 1, h2 − 3) ≤ 0, max(0, h1 + 1, h2 − 1) ≤
x1 + 1, max(0, h1 − 1, h2 − 1) ≤ x2 + 1, max(0, x1 + 1, x2 − 1, h1 + 3, h2 − 1) ≤
h1 + 3, max(0, x1 + 1, x2 + 1, h1 + 1, h2 + 1) ≤ h2 + 1 which encode all zones
inequalities: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1, −3 ≤ h1 ≤ 1, −1 ≤ h2 ≤ 3, −2 ≤
h1−x1 ≤ 0, −4 ≤ h1−x2 ≤ 2, 0 ≤ h2−x1 ≤ 2, 0 ≤ h2−x2 ≤ 2, −4 ≤ h1−h2 ≤
0. Note that the zone abstraction of [30] would be equivalent to an interval
abstraction and would not infer the relations between h1, h2, x1 and x2. Now the
internal representation of the corresponding zone is A = (−1,−1,−3,−1), B1 =
(1,−1,−1, 1), B2 = (−1, 1,−3, 1), C1 = (−1,−1, 1, 1), C2 = (−1, 1,−1, 3). The
projections of these 5 extreme points on (h1, h2) give the points (−3,−1), (−1, 1),
(−3, 1), (1, 1), (−1, 3), among which (−3, 1) and (−1, 1) are in the tropical convex
hull of A = (−3,−1), B1 = (1, 1) and B2 = (−1, 3) represented in Figure 3a.
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Indeed (−3, 1) is on the tropical line (AB2) and (−1, 1) whereas (−1, 1) is on
the tropical line (AB1) as a tropical linear combination of −2+B1 and −2+B2:
(−1, 1) = max(−2 + (1, 1),−2 + (−1, 3)).

Example 8. Consider now function f : R2 → R2 with f(x1, x2) = (0.9x1 +
1.1x2, y2 = 1.1x1 − 0.9x2) on (x1, x2) ∈ [−1, 1]. We have in particular M1 = 2,
M2 = 2, m1 = −2 and m2 = −2. We compute δ1,1 = 1.8, δ1,2 = 2, δ2,1 = 2
and δ2,2 = 0 and we have indeed y1 + 2 ≥ x1 − 1 + δ1,1 = x1 + 0.8, y2 + 2 ≥
x1− 1 + 2 = x1 + 1, y1 + 2 ≥ x2− 1 + δ2,1 = x1 + 1, y2 + 2 ≥ x2− 1 and y1− 2 ≤
x1 +1−1.8 = x1−0.8, y2−2 ≤ x1 +1−2 = x1−1, y1−2 ≤ x2 +1−2 = x2−1,
y2 − 2 ≤ x2 + 1. Overall:

x1 − 1.2 ≤ y1 ≤ x1 + 1.2
x2 − 1 ≤ y1 ≤ x2 + 1
x1 − 1 ≤ y2 ≤ x1 + 1
x2 − 3 ≤ y2 ≤ x2 + 3

We also find d1,1 = −2, d1,2 = 0.2, d2,1 = 0.2 and d2,2 = −2. Hence y1 − d1,2 ≤
y2−m2, i.e. y1−0.2 ≤ y2+2 that is y1−y2 ≤ 2.2. Similarly, we find y2−y1 ≤ 2+0.2
hence −2.2 ≤ y1 − y2 ≤ 2.2.

The equations we found can be written as the following linear tropical con-
straints as in Theorem 1:

max


x1 − 1
x2 − 1
y1 − 2
y2 − 2

 ≤ 0 max

 0
y1 − 0.2
y2

 ≤ x1 + 1 max

 0
y1

y2 − 2

 ≤ x2 + 1

max


0

x1 + 0.8
x2 + 1
y1 + 2
y2 − 0.2

 ≤ y1 + 2 max


0

x1 + 1
x2 − 1
y1 − 0.2
y2 + 2

 ≤ y2 + 2

We now depict both the image of f as a blue rotated central square, and its over-
approximation by the convex tropical polyhedron calculated as in Theorem 1 in
green, in the plane (y1, y2). As c1,1 = 2, c1,2 = −0.2, c2,1 = −0.2 and c2,2 = 2,
the extremal points are, in the (x1, x2, y1, y2) coordinates:

A =


−1
−1
−2
−2

 B1 =


1
−1
−0.2

0

 B2 =


−1
1
0
−2

 C1 =


0.8
1
2
−0.2

 C2 =


1
−1
−0.2

2


3.2 Octagon abstractions and (max,+,−) algebra

As in Section 3.1, we consider the abstraction of the image of an hypercube K
of Rm by an affine transformation f : Rm → Rn defined, for all x ∈ Rm and
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Fig. 6: Over-approximation for (y1, y2) = f(x1, x2) = (0.9x1+1.1x2, y2 = 1.1x1−
0.9x2).

i ∈ [1, n], by
(
f(x)

)
i

=
∑m
j=1 wi,jxj +bi. But we consider here the abstraction of

this image by an octagon, we will thus add some constraints on sums of variables
to the abstraction computed in Section 3.1.

Proposition 4 (Optimal approximation of a linear layer by an oc-
tagon). Let K ⊂ Rm be an hypercube defined as K =

∏
j [xj , xj ], with xj , xj ∈ R.

The tightest octagon of Rm × Rn containing

S :=
{(
x, f(x)

) ∣∣∣x ∈ K}
is the set of all (x, y) ∈ Rm × Rn satisfying( ∧

1≤j≤m

xj ≤ xj ≤ xj

)
∧

( ∧
1≤i≤n

mi ≤ yi ≤Mi

)
∧

( ∧
1≤i1,i2≤m

yi1 − yi2 ≤ ∆i1,i2

)

∧

( ∧
1≤i1,i2≤n

Li1,i2 ≤ yi1 + yi2 ≤ Γi1,i2

)

∧

( ∧
1≤i≤n,1≤j≤m

mi − xj + δi,j ≤ yi − xj ≤Mi − xj − δi,j

)

∧

(∧
i,j

mi + xj + γi,j ≤ yi + xj ≤Mi + xj − γi,j

)
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where mi,Mi, δi,j , ∆i1,i2 are defined as in Proposition 3, and

Γi1,i2 :=
∑

wi1,j+wi2,j<0

xj(wi1,j + wi2,j) +
∑

wi1,j+wi2,j>0

xj(wi1,j + wi2,j)

Li1,i2 :=
∑

wi1,j+wi2,j<0

xj(wi1,j + wi2,j) +
∑

wi1,j+wi2,j>0

xj(wi1,j + wi2,j)

γi,j :=


0, if 0 ≤ wi,j
−wi,j(xj − xj), if − 1 ≤ wi,j ≤ 0

(xj − xj), if wi,j ≤ −1

The proof is given in Appendix C.

With the notations of Proposition 4, we have

Proposition 5. Let M be the (classically) linear manifold in Rm × Rn × Rm ×
Rn defined by (x+, y+, x−, y−) ∈ M if and only if x+ + x− = 0 and y+ +
y− = 0. The octagon S defined in Proposition 4 is equal to the intersection
of M with the tropical convex polyhedron generated by the 1 + 2n + 2m points
A,B+

1 , . . . , B
+
m, B

−
1 , . . . , B

−
m, C

+
1 , . . . , C

+
n , C

−
1 , . . . , C

−
n , where

A = (x1, . . . , xm,m1, . . . ,mn,−x1, . . . ,−xm,−M1, . . . ,−Mn)

B+
k = (0, x+, y+, x−, y−) with x+k = xk, x+j 6=k = xj , y+i = mi + δi,k

x−k = −xk, x−j 6=k = −xj , y−i = −Mi + γi,k

B−k = (0, x+, y+, x−, y−) with x−k = −xk, x−j 6=k = −xj , y−i = −Mi + δi,k

x+k = xk, x+j 6=k = xj , y+i = mi + γi,k

C+
l = (0, x+, y+, x−, y−) with y+l = Ml, y+i 6=l = Ml −∆l,i, x+j = xj + δl,j

y−l = −Ml, y−i 6=l = Ml − Γl,i, x−j = −xj + γl,j

C−l = (0, x+, y+, x−, y−) with y−l = −ml, y−i 6=l = −ml −∆i,l, x−j = −xj + δl,j

y+l = ml, y+i 6=l = −ml + Ll,i, x+j = xj + γl,j

The proof is given in Appendix D.
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Example 9 (Running example). For the example network of Example 1, the for-
mulas of Proposition 4 give the following constraints:

− 1 ≤ x1 ≤ 1

0 ≤ x1 − h1 ≤ 2

− 4 ≤ x1 + h1 ≤ 2

− 2 ≤ x1 − h2 ≤ 0

− 2 ≤ x1 + h2 ≤ 4

− 1 ≤ x2 ≤ 1

− 2 ≤ x2 − h1 ≤ 4

− 2 ≤ x2 + h1 ≤ 0

− 2 ≤ x2 − h2 ≤ 0

− 2 ≤ x2 + h2 ≤ 4

− 3 ≤ h1 ≤ 1

0 ≤ h2 − h1 ≤ 4

− 2 ≤ h2 + h1 ≤ 2

− 1 ≤ h2 ≤ 3

And the internal description is given by Proposition 5, with the following extreme
points, where coordinates are ordered as (x+1 , x

+
2 , h

+
1 , h

+
2 , x

−
1 , x

−
2 , h

−
1 , h

−
2 ):

(−1,−1,−3,−1,−1,−1,−1,−3)

(1,−1,−1, 1,−1,−1,−1,−3)

(−1, 1,−3, 1,−1,−1, 1,−3)

(−1,−1,−3,−1,−1,−1,−1,−3)

(1,−1, 1, 1,−1, 1,−1,−1)

(1, 1,−1, 3,−1,−1, 1,−3)

(−1,−1,−3,−1, 1,−1, 1,−1)

(−1,−1,−1,−1,−1, 1,−1,−1)

(−1,−1,−3,−1,−1,−1,−1,−3)

(−1, 1,−3, 1, 1,−1, 3,−1)

(−1,−1,−1,−1, 1, 1, 1, 1)

From the extremal points for the octagon abstraction above, we get the ex-
tremal points for (h+1 , h

+
2 ), discarding the non extremal ones: (−3,−1), (1, 1)

and (−1, 3). and for (h+1 , h
−
2 ): (−3,−3), (1,−1) and (−1, 1) giving the zone in

cyan of Figure 3.
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4 Validation of multi-layered neural networks

General algorithm The method developed in Section 3 is the cornerstone
of our algorithm for analysing neural networks. A ReLU neural net consists
of a chain of two kinds of computations, one which applies a classical linear
transformation to their inputs, and another one which applies a ReLU function.
We have seen that the affine map transformation can be over-approximated using
tropical polyhedra. ReLU being a tropical affine function, the ReLU transform
is exact in tropical polyhedra. It is thus possible to use tropical polyhedra to
represent reachable states for every node in the network, at least for one layer
ReLU networks.

Example 10. We carry on with Example 1 and complete the final computations
of Example 7. The external representation is given by the tropical linear inequal-
ities of Example 7 together with inequalities max(0, h1) ≤ y1 ≤ max(0, h1) and
max(0, h2) ≤ y2 ≤ max(0, h2). Now the corresponding tropical polyhedron is
generated by the linear tropical operator ReLU on each of the extremal points
A, B1, B2, C1 and C2 and gives the two extra (last) coordinates in the axes
(x1, x2, h1, h2, y1, y2), A′ = (−1,−1,−3,−1, 0, 0), B′1 = (1,−1,−1, 1, 0, 1), B′2 =
(−1, 1,−3, 1, 0, 1), C ′1 = (−1,−1, 1, 1, 1, 1), C ′2 = (−1, 1,−1, 3, 0, 3). The projec-
tions of theses 5 extreme points on (h1, y2) give the points (0, 0), (0, 1), (1, 1),
(0, 3) among which (0, 1) is in the convex hull of A′ = (0, 0), B′2 = B2 = (1, 1)
and B′1 = (0, 3) represented in Figure 3a.

The polyhedron given by the method of Section 3 only gives relations between
2 layers (the input and the first hidden layer). In order to get a polyhedron that
represents the whole network when combining with e.g. another layer, we need
to embed the first polyhedron from a space that represents only 2 layers to a
higher space that represents the complete network, with one dimension per node.
We will then need to intersect the polyhedra generated by each pair of layers
to get the final result. Finally, as we are only interested in the input-output
abstraction of the whole network, we can reduce computing costs by removing
the dimensions corresponding to middle layers once those are calculated.

To this end, we use the following notations. Let L ⊂ {L0, . . . , LN} be a set
of layers, layer i containing ni+1 neurons as in Definition 2. Let n be the sum
of all ni+1, with i such that Li ∈ L and SL ≡ Rnmax be the tropical space in
which we are going to interpret the values of the neurons on layers in L, with
each dimension of SL corresponding to a node of a layer of L.

For L1,L2 ⊂ {L0, . . . , LN}, for H ⊂ SL1 a tropical polyhedron, we denote
by Proj(H,L2) ⊂ SL2 the projection of H onto SL2 when SL2 ⊆ SL1 and let
Emb(H,L2) ⊂ SL2

be the embedding of H into SL2
when SL1

⊆ SL2
.

The main steps of our algorithm for over-approximating the values of neurons
in a multi-layer ReLU network are the following:

– We start with an initial tropical polyhedron H0 ⊂ S{L0} that represents the
interval ranges of the input layer L0.

– For each additional layer Li+1:
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• Calculate an enclosing hypercube Ci for the nodes of layer Li, given the
current abstraction Hi ⊂ SLi

(Section 2.3).
• Calculate the polyhedron Pi+1 representing relationships between layer
Li and the new layer Li+1, for nodes of layer Li taking values in Ci,
as described in Section 3: Theorem 1 for the external description, and
Theorem 2 for the internal description.

• Let L′i+1 = Li∪{Li+1}. Calculate P ′i+1 = Emb(Pi+1,L′i+1) (see below).
• Intersect P ′i+1 with the projection (using the internal description, see

below) of the previous abstraction Hi to get H′i+1 = Emb(Hi,L′i+1) ∩
P ′i+1 (using the external description).

• Choose Li+1 ⊃ {Li+1}, and calculateHi+1 = Proj(H′i+1,Li+1). Usually,
we would use Li+1 = {L0, Li+1} if we only want relations between the
input and output layers, or Li+1 = {L0, . . . , Li+1} if we want relations
between every layer.

We need now to describe the projection and embedding functions Proj and
Emb. Let L2 ⊂ L1 ⊂ {L0, . . . , LN} be two sets of layers. Let H be a polyhedron
on SL1

. We have H′ = Proj(H,L2) = {(xi)Li∈L2
, (xi)Li∈L1

∈ H}, i.e. for each
point in H, we only keep the dimensions corresponding to layers in L2, and
discard the other dimensions. Projecting is easy with the internal description of
polyhedron, as we can project the extreme points of H to get generators of H′.
However, we do not have a simple algorithm to project the external description
of a polyhedron.

Let L1 ⊂ L2 ⊂ {L0, . . . , LN} be two sets of layers, and ∆ be the sum of
ni+1, the number of neurons of layer Li, for i such that Li ∈ L2 \ L1. Let
H be a polyhedron on SL1

. We note that S2 ≡ S1 × R∆max, and thus H′ =
Emb(H,L2) ≡ H × R∆max, i.e. we add dimensions corresponding to each node
in L2 which are not in L1, and let points in H′ take any value of Rmax on
these dimensions. Embedding is based on simple matrices concatenations in the
external description, see Appendix F for more details. Embedding using the
internal description is more involved and is explained after exemplifying things
on a simple example.

Example 11. We consider the 1-layer neural net of Example 1, and add a second
layer. The new linear layer is defined by u1 = y2 − y1 − 1, u2 = y1 − y2 + 1
and the output neurons are z1 = max(0, u1) = max(0, y2 − y1 − 1) and z2 =
max(0, u2) = max(0, y1 − y2 + 1).

The enclosing cube for the tropical polyhedron H containing the values of
neurons of the first layer L1: y1, y2 of Example 1 is [0, 1] × [0, 3]. The analysis
of the second layer L2, supposing its input belongs to [0, 1] × [0, 3] gives the
constraint (an extract of the external representation of the resulting tropical
polyhedron H′) −3 ≤ u1 − y1 ≤ 2, −2 ≤ u1 − y2 ≤ −1, −2 ≤ u2 − y1 ≤
1, −5 ≤ u2 − y2 ≤ 2, z1 = max(0, u1), z2 = max(0, u2). The intersection of
the embedding Emb(H′, {L0, L1, L2}) with the embedding Emb(H, {L0, L1, L2})
consists, as we saw above, in concatenating the tropical constraints, in the
common space of variables. This implies in particular that we add the con-
straint −3 ≤ y1 − y2 ≤ 0 to the above equations. The intersection is actually
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a zone intersection, where we have to normalize the corresponding DBM. A
manual calculation shows that this will make use of the equalities u2 − y2 =
(u2−y1)+(y1−y2), u1−y1 = (u1−y2)+(y2−y1). By combining equations, we
get the refined bounds (refined lower bound for the first equation, refined upper
bound for the second equation) −2 ≤ u1 − y1 ≤ 2, −5 ≤ u2 − y2 ≤ 1.

Embedding a tropical polyhedron: internal description In this paragraph, we em-
bed a polyhedron into a higher dimensional space, using the internal description.

Suppose H is a tropical polyhedron in Rn (such as Pi in the previous section)
that we want to embed H into a larger space, with an extra coordinate, which
we consider bounded here within [a, b]. So we need to determine a presentation
of the tropical polyedron H′ = H× [a, b].

Supposing we have m extreme points pi for representing H, a naive method
consists in noticing that the family (pi, a), (pi, b) is a generator of H′ and remov-
ing non-extreme points from that list. But that would exhibit poor performance,
as we get m× 2k extreme points for H′′. We can in fact do better:

Theorem 3. The extreme points of H′ are {(pi, a), 1 ≤ i ≤ m}∪{(pi, b), i ∈ I},
where I is a subset of indexes of generators of H, I ⊂ [1,m], such that:

∀i ∈ I, ∀j ∈ [1,m] \ {i}, pi ⊕ pj 6= pi (5)

∀i ∈ [1,m] \ I, ∃j ∈ [1,m] \ {i} s.t. pi ⊕ pj = pi (6)

The proof is given in Appendix G. Passing to the limit, this shows that the
extreme points of H × R are (pi,−∞), i = 1, . . . ,m and the extreme rays are
(pi, 0), i ∈ I for the smallest I verifying Equation 7. In the current implementa-
tion, we do not use extreme rays and embed H into larger state spaces by using
large enough values for a and b.

Checking properties on ReLU neural nets Given an affine guard

h(x, y) =

m∑
i=1

hixi +

n∑
j=1

h′jyj + c

where xi, resp. yj are the input, resp. output neurons, we want to determine
whether, for all input values in [−1, 1], we have h(x) ≥ 0 (this can encode
properties (P1) and (P2) of Example 1).

There are two ways to check such properties. The first one, that we have im-
plemented, is as follows. We abstract the input output relation that the network
under analysis encodes, using a tropical polyhedron H as described in Section
4. From this, we derive the smallest zone Z containing H as in Section 2.3.
Finally, we solve the linear programming problem m = min

x,y∈Z
h(x, y) using any

classical algorithm (we used glpk in our prototype). This is enough for checking
(P1) in Example 1 since m ≥ 0 proves our property true, but not (P2). The
second way can be useful to check (P2): here we have no choice but try to solve
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m = min
x,y∈H

h(x, y) which is not a convex optimization problem, in any sense

(tropical nor classical). This could be encoded as MILP problem instead and is
left for future work.

5 Improvements of the analysis

We will refine here the tropical abstractions we have defined in Section 3 by
”subdividing” the support of the functions we are approximating. Since we are
linearizing tropical rational functions, we expect to be closer and closer to the
actual graph of the function, by doing enough subdivisions.

We begin by showing how we can improve the abstraction of affine scalar
functions f , in the particular case where m = n = 1 i.e. when f goes from R to
R, before we treat the much more involved general case in Theorem 5. Thus, we
suppose first that we want to abstract the graph Gf of f(x) = λx+m, x ∈ [a, b],
by a tropical polyhedron.

We can get a more precise result than what we got in Section 3, i.e. a smaller
polyhedron that still contains all {(x, f(x))|x ∈ [a, b]} by splitting the interval
[a, b] in N sub-intervals [ck, ck+1], with c0 = a and cN = b and calculating an
over-approximation of f on each sub-interval, and returning the tropical union
of all these polyhedra. In fact, we can give again explicit external and internal
representations of these unions of tropical polyhedra as follows.

Theorem 4. A sound abstraction as a tropical polyhedron P of the graph Gf of
f over [a, b] given by subdividing the domain in N sub-intervals has the following
external representation of N + 2 tropical inequalities, P is defined by depending
on the value of λ:

– If λ ≤ 0, we add the N − 1 constraints 0 ≤ max(x − ck, y − f(ck)) for
k = 1, . . . , N − 1, to the ones of Theorem 1, i.e. a ≤ x, f(b) ≤ y and
max(x− b, y − f(a)) ≤ 0

– If 0 ≤ λ ≤ 1, we add the N − 1 constraints y − f(ck) ≤ max(0, x − ck) for
k = 1, . . . , N−1, to the ones of Theorem 1, i.e. y−f(a) ≤ x−a, y−f(b) ≤ 0
and max(x− b+ f(b), f(a)) ≤ y

– If λ ≥ 1, we add the N − 1 constraints x − ck ≤ max(0, y − f(ck)) for
k = 1, . . . , N − 1, to the ones of Theorem 1, i.e. max(y − f(b) + b, a) ≤ x,
x ≤ b, x− a ≤ f(x)− f(a).

P can also be internally represented as the tropical convex hull of at most N + 2
extreme points A, B and Ci, i ∈ [1, N ] with A = (a, f(a)), B = (b, f(b)), and
C is (ci−1, f(ci)) if λ ≤ 0, (ci−1 + f(ci) − f(ci−1), f(ci)) if 0 ≤ λ ≤ 1 and
(ci, f(ci−1) + ci − ci−1) if λ ≥ 1.

Proof. Take any k in [0, N − 1]. Consider first the case λ ≤ 0. Now if x ≤ ck,
then f(x) ≥ f(ck), and if x ≥ ck, then f(x) ≤ f(ck). Therefore 0 ≤ max(x −
ck, f(x)− f(ck)).
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Now, suppose 0 ≤ λ ≤ 1. If x ≤ ck, then f(x) ≤ f(ck), otherwise if x ≥ ck,
then f(x)− f(ck) ≤ x− ck, and we conclude that f(x)− f(ck) ≤ max(0, x− ck).

Finally, we consider the case λ ≥ 1. If x ≤ ck, then f(x) ≤ f(ck), whereas if
x ≥ ck, then f(x)−f(ck) ≥ x−ck. This means that x−ck ≤ max(0, f(x)−f(ck)).

Fig. 7: Possible subdivisions (N = 2) for abstracting f : R→ R

Compare Figure 7 with Figure 4 to see the improvement due to subdivision.
Still, the tropical inequalities that we added using subdivisions give more pre-
cision on only ”one side” of the polyhedron. This will not be the case with the
abstraction based on the octagon abstraction of Section 3.2.

Now we are considering the general case where f is an affine function from
Rm to Rn. We consider here subdivisions c0i = ai, . . . c

N
i = bi of intervals [ai, bi],

i = 1, . . . ,m in N subintervals, and want to generalize the previous result to this
higher dimensional case. Contrarily to the previous case (f : R→ R), we have no
explicit external nor internal representation for the tropical polyhedron, union
of the tropical polyhedra, abstraction of the graph of f over each subdomain
using Theorem 1. We could still take their unions, as a tropical polyhedron,
using the double description method [2]. In the sequel, we describe a sound
abstraction of this union, as a tropical polyhedron, that is generally sufficient
for our purpose and does not need the computational complexity of the double
description method.

Theorem 5. A sound and tighter over-approximation of Gf than the one of
Theorem 1 is given externally by the tropical constraints of Theorem 1 plus the
following constraints, for any subdivision c0i = ai, . . . c

N
i = bi of intervals [ai, bi],

i = 1, . . . ,m in N subintervals:

– If λi,j ≤ 0, then we add the constraint 0 ≤ max(xi−cki , yj−mj+λi,j(bi−cki )).
Otherwise if 0 ≤ λi,j ≤ 1, we add the constraint yj −Mj + λi,j(bi − cki ) ≤
max(0, xi− cki ). And finally, we add xi− cki ≤ max(0, yj−mj−λi,j(cki −ai))
if λi,j ≥ 1.
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– Let Ij− ⊂ [1,m], maximal, such as for all i ∈ Ij−, λi,j ≤ 0. We write
σj− =

∑
i∈Ij−

λi,j(bi − cki ). Then, we add the constraint 0 ≤ max(yj −mj +

σj−, max
i∈Ij−

(xi − cki )).

– Let Ij0 ⊂ [1,m], maximal, such as for all i ∈ Ij0, 0 ≤ λi,j ≤ 1 and
∑
i∈Ij0

λi,j ≤

1 and let σj0 =
∑
i∈Ij0

λi,j(bi−cki ). Then we add the constraint yj−Mj+σj0 ≤

max(0,max
i∈Ij0

(xi − cki )).

– Finally, for any J subset of [1, n], let σi,J =
∑
j∈J

λi,j and mJ = σ0,J +∑
σi,J<0

σi,Jbi+
∑

σi,J>0
σi,Jai. For j ∈ J , let uj ∈ [mj ,Mj ] such as

∑
j∈J

uj = mJ :

we add the constraint 0 ≤ maxj∈J(yj − uj)
We exemplify this in Figures 8 and 9. The proof is given in Appendix I.

Fig. 8: Over-approximation in R2 → R with λ1 = λ2 = −0.5, with no sub-
division (left), and with three extra inequalities (right): 0 ≤ max(x1, x2, y),
0 ≤ max(x1, y + 0.5) and 0 ≤ max(x2, y + 0.5)

6 Implementation, experiments and benchmarks

Internal, external and double description methods Overall, we have de-
veloped methods for propagating an outer-approximation of the values that the
different layers of neurons can take, within a MLP with ReLU activation. Let us
discuss the pros and cons of using the internal description, external description
and double description methods:
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Fig. 9: Over-approximation in R2 → R with λ1 = λ2 = +0.5, with no subdivision
(left), and with one extra inequalities (right): y ≤ max(x1, x2)

– The double description method allows for possibly using subdivisions, propa-
gating values in multiple layers and projecting them onto a subset of interest-
ing neurons (e.g. input and output layers), as well as computing an enclosing
zone, for synthesizing classification properties. We have implemented this in
a prototype using Polymake [19], whose results we briefly discuss below.

– The internal description allows for analyzing one layer networks, using sub-
divisions, project onto an interesting subset of neurons, as well as computing
an enclosing zone (Section 2.3). We have implemented this method in C++
in a standalone prototype, nntrop, that takes as input a Sherlock file [15] de-
scribing the one hidden layer neural net to analyze plus a linear formula to be
checked, and returns the tropical abstraction of the values that neurons can
take, its over-approximation by a zone, and whether the linear specification
is satisfied or not.

– The external description allows for analyzing multiple layer networks (see
Section 4).

The double description method is much more expensive since the translation
between the internal and external representations may be quite complex.

Experiments and benchmarks We briefly compare the computation times
between internal description only and double description in Table 1. For each
example, we indicate in the columns # inp. the number of input neurons, #
out. the number of output neurons, # hid. the number of hidden layers, #

neur. is the total number of neurons (input, output and hidden), t. intern

is the time spent for computing the internal representation and t. double for
the double description of the tropical polyhedron abstracting the corresponding
neural net. Experiments are performed on a simple computer with ArchLinux
and a Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz.

We of course see the influence of a potential exponential complexity for going
back and forth between internal and external descriptions, but also the fact that
we relied on a perl (interpreted) implementation of tropical polyhedra (the one of
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polymake [19], with exact rational arithmetics), which is much slower than the
C++ implementation we wrote for the internal description method (although
the internal description method does work in a twice as big space because it
considers the octagon instead of just zone abstraction).

Table 1: Execution times (internal and double description) on sample networks.

Example # inp. # out. # hid. # neur. t. intern. (s) t. double (s)

running 2 2 0 4 0.006 1.83

running2 2 2 1 6 0.011 4.34

multi 2 8 1 13 0.005 3.9

krelu 2 2 0 4 0.011 1.94

tora modified controller 4 1 1 6 0.005 14.57

tora modified controller 1 4 1 1 105 0.75 815.12

quadcopter trial controller 3 18 1 1 49 0.009 102.54

quadcopter trial controller 1 18 1 1 69 0.2 469.77

quad modified controller 18 1 1 20 0.005 14

car nn controller 2 4 2 1 506 104.75 –

car nn controller 1 4 2 1 506 88.8 –

ex 2 1 5 59 0.195 1682.28

In Table 1, running is the network of Example 1, and running2 is the exten-
sion with an extra layer of Example 11, discussed in great length in these exam-
ples. Example krelu is the running example from [36] that we discuss at the end
of this section, and tora modified controller, tora modified controller 1,
quadcopter trial controller 3, quadcopter trial controller 1, quad mo-

dified controller, car nn controller 2, car nn controller 1 and ex are
examples from the distribution of Sherlock [15]. ex is a multi-layer example for
which the algorithm using only the internal representation does not compute the
intersection of tropical polyhedra between layers (involving the external repre-
sentation), contrarily to the double description prototype. We now discuss some
of these examples below.

Network multi is a simple 2-layer, 13 neurons example with inputs x1, x2,
outputs y1, y2, . . . , y8 and

h1h2
h3

 = ReLU

 1 1
1 −1
−1 −1

[x1
x2

],



y1
y2
y3
y4
y5
y6
y7
y8


= max







1 1 1
1 1 −1
1 −1 1
1 −1 −1
−1 1 1
−1 1 −1
−1 −1 1
−1 −1 −1



h1h2
h3




, 0


.

Our zone based abstraction returns the following ranges: y1 ∈ [0, 6], y2 ∈ [0, 4],
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y3 ∈ [0, 4], y4 ∈ [0, 2], y5 ∈ [0, 4], y6 ∈ [0, 2], y5 ∈ [0, 2] and y8 = 0, whereas the
exact ranges for y1 to y7 is [0, 2]. Our algorithm is thus exact for y4, y6, y7 and
y8 but not y1, y2, y3 nor y5. This is due to the fact that the zone-based tropical
abstraction does represent faithfully the differences of neuron values, but not
sums in particular. For instance, y2 = max(0, 2x1) which cannot be represented
exactly by our method.

Network krelu is a 2 layer 4 neurons example from [36]. We get the correct
bounds on the outputs: 0 ≤ z1, z2 ≤ 2, as well as relations between the inputs and
the outputs: zj ≤ xi + 1. However, we do not have significant relations between
z1 and z2, as those are not tropically linear. We refer to the results obtained
with 1-ReLU and 2-ReLU in [36]: they both get better relations between z1 and
z2, in particular z1 + z2 ≤ 2 which is not representable in a tropical manner
(except by using an octagon based abstraction, which is outside the scope of
this paper). However 1-ReLU does not keep track of relations between the inputs
and the outputs, and has sub-optimal relations between the outputs, as it cannot
represent the non linear ReLU function exactly. 2-ReLU, on the other hand gets
both the relation between the output variables, and between the inputs and
outputs correct, but is more computationally expensive.

In order to assess the efficiency of the internal de-
scription methods, we have run a number of experi-
ments, with various number of inputs and ouputs for
neural nets with one hidden layer only. The linear lay-
ers are generated randomly, with weights between -2
and 2. For 100 inputs and 100 neurons in the hid-
den layer, the full pipeline (checking the linear spec-
ification in particular) took about 35 seconds, among
which the tropical polyhedron analysis took 6 seconds.
Timings are shown in the figure on the right (demon-
strating the expected complexity, cubical in the num-
ber of neurons), where the x-axis is number of input
neurons, y-axis is the number of output neurons, and
z-axis is time.

7 Conclusion and future work

We have explored the use of tropical polyhedra as a way to circumvent the
combinatorial complexity of neural networks with ReLU activation function.
The first experiments we made show that our approximations are tractable when
we are able to use either the internal or the external representations for tropical
polyhedra, and not both at the same time. This is akin to the results obtained in
the classical polyhedron approach, where most of the time, only a sub polyhedral
domain is implemented, needing only one of the two kinds of representations.
It is interesting to notice that a recent paper explores the use of octohedral
constraints, a three-dimensional counterpart of our octagonal representations,
in the search of more tractable yet efficient abstraction for ReLU neural nets
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[32]. This work is a first step towards a hierarchy of approximations for ReLU
MLPs. We have been approximating the tropical rational functions that these
neural nets compute by tropical affine functions, and the natural continuation of
this work is to go for higher-order approximants, in the tropical world. We also
believe that the tropical approach to abstracting ReLU neural networks would
be particularly well suited to verification of ternary nets [28]. These ternary nets
have gained importance, in particular in embedded systems: simpler weights
mean smaller memory needs and faster evaluation, and it has been observed [1]
that they can provide similar performance to general networks.
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PhD thesis, École Polytechnique, Palaiseau, France, 2009.

4. Xavier Allamigeon, Stephane Gaubert, and Eric Goubault. Inferring min and
max invariants using max-plus polyhedra. In Maria Alpuente and Germain Vidal,
editors, Static Analysis, 15th International Symposium, SAS 2008, Valencia, Spain,
July 16-18, 2008. Proceedings, volume 5079 of Lecture Notes in Computer Science,
pages 189–204. Springer, 2008.
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A Proof of Proposition 1

Proof. We begin by proving that Hint ⊂ Hext. For this, we only need to prove
that the generators are in Hext.

For all i and j such that 0 ≤ i, j ≤ n, we know that c0,i + ci,j ≥ c0,j as the
zone representation we started with is closed. Thus ai − aj = −c0,i + c0,j ≤ ci,j
and A ∈ Hext.

Similarly, for all k ∈ [1, n], we have bk,i − bk,j = (ck,0 − ck,i)− (ck,0 − ck,j) =
−ck,i + ck,j ≤ ci,j as the initial zone is closed, hence Bk ∈ Hext.

We then prove that Hext ⊂ Hint. Let x = (x1, . . . , xn) ∈ Hext. We define
x′ = (x′i)1≤i≤n by

x′i = max(ai,max
k

(xk − ck,i)).

Noting that we can rewrite

x′i = max(ai,max
k

(xk − ck,0 + ck,0 − ck,i)),

we have x′ = max(a,maxk(λk + bk)), with λk ≤ 0, thus x′ ∈ Hint.
Moeover, x′j ≥ xj − cj,j = xj (cj,j being equal to zero for a closed zone).

Finally, aj ≤ xj and for each i ∈ [1, n], xi − ci,j ≤ xj by definition of x ∈ Hext,
thus x′j ≤ xj . We conclude x′ = x, and Hext ⊂ Hint.

B Proof of Proposition 3

Proof. The tightest zone is obtained as the conjunction of the bounds xj ≤ xj ≤
xj on input x, given as hypercube K, the bounds on the yi and yi1−yi2 obtained
by a direct computation of bounds of the affine transform of the input hypercube
K, and finally the bounds on the differences yi−xj which computation is detailed
below. Noting as in Proposition 3

mi = min
(x,y)∈S

yi =
∑
wi,j<0

wi,jxj +
∑
wi,j>0

wi,jxj + bi

and
Mi = max

(x,y)∈S
yi =

∑
wi,j<0

wi,jxj +
∑
wi,j>0

wi,jxj + bi,

we can rewrite yi − xj = (Mi − xj) + (yi − Mi) − (xj − xj) and yi − xj =
(mi − xj) + (yi −mi)− (xj − xj) and consider now the following cases:

– if wi,j ≤ 0: in that case, (yi −Mi) − (xj − xj) ≤ maxx((wijxj − wijxj) −
(xj − xj)) = maxx(wij − 1)(xj − xj) = 0 (which is −δi,j) and the bound on
(yi −Mi) − (xj − xj) is reached for xj = xj ; fo the other bound, we have
(yi − mi) − (xj − xj) ≥ minx((wijxj − wijxj) − (xj − xj)) = minx(wij −
1)(xj − xj) = 0 (which is δi,j) reached for xj = xj .

– if wi,j ≥ 0: in that case, (yi −Mi) − (xj − xj) ≤ maxx((wijxj − wijxj) −
(xj − xj)) and (yi −mi) − (xj − xj) ≥ minx((wijxj − wijxj) − (xj − xj));
we need to distinguish 2 sub-cases:
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• if 0 ≤ wi,j ≤ 1: then maxx((wijxj − wijxj)− (xj − xj)) = wij(xj − xj)
(which is −δi,j) and is reached for xj = xj and minx((wijxj − wijxj)−
(xj − xj)) = wij(xj − xj) (which is δi,j) and is reached for xj = xj

• if wi,j ≥ 1: then maxx((wijxj−wijxj)− (xj−xj)) = (xj−xj) (which is
−δi,j) and is reached for xj = xj and minx((wijxj−wijxj)−(xj−xj)) =
(xj − xj) (which is δi,j) and is reached for xj = xj .

In all cases, these bounds correspond to the inequalities mi−xj+δi,j ≤ yi−xj ≤
Mi − xj − δi,j of Proposition 3, with δi,j = min(x,y)∈S

(
(yi −mi)− (xj − xj)

)
=

−max(x,y)∈S
(
(yi −Mi)− (xj − xj)

)
.

C Proof of Proposition 4

Proof. This is a direct extension of Proposition 3. The bounds on xj , yi, yi1−yi2
and yi − xj are computed similarly. The bounds on the sums yi1 + yi2 are easy
to obtain. Let us concentrate on the computation bounds on yi + xj . Similarly
as in the proof of Proposition3, we first note that we can rewrite yi + xj =
(Mi +xj) + (yi−Mi) + (xj −xj) and yi +xj = (mi +xj) + (yi−mi) + (xj −xj)
and consider the following cases:

– if wi,j ≤ 0: in that case, (yi −Mi) + (xj − xj) ≤ maxx((wijxj − wijxj) +
(xj − xj)) and (yi −mi) + (xj − xj) ≥ minx((wijxj − wijxj) + (xj − xj));
we need to distinguish 2 sub-cases:

• if wi,j ≤ −1: then maxx((wijxj −wijxj) + (xj −xj)) = (xj −xj) (which
is −γij) reached for xj = xj and minx((wijxj − wijxj) + (xj − xj)) =
(xj − xj) (which is γij) reached for xj = xj

• if −1 ≤ wi,j ≤ 0: then maxx((wijxj −wijxj) + (xj −xj)) = wij(xj −xj)
(which is −γij) reached for xj = xj and and minx((wijxj − wijxj) +
(xj − xj)) = wij(xj − xj) (which is γij) reached for xj = xj

– if wi,j ≥ 0: in that case,(yi −Mi) + (xj − xj) ≤ maxx((wijxj − wijxj) +
(xj − xj)) = maxx(wij + 1)(xj − xj) = 0 and (yi − mi) + (xj − xj) ≥
minx((wijxj − wijxj) + (xj − xj)) = 0 (which is γij).

In all cases, these bounds correspond to the inequalities mi+xj+γi,j ≤ yi+xj ≤
Mi + xj − γi,j of Proposition 3, with γi,j = min(x,y)∈S

(
(wijxj −wijxj) + (xj −

xj)
)

= −max(x,y)∈S
(
(yi −Mi) + (xj − xj)

)
.

D Proof of Proposition 5

Proof. Let M be the linear manifold defined above. The octagon defined in
Proposition 4 is the concretization of the zone defined as the set of all (x+, y+, x−, y−) ∈
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Rm × Rn × Rm × Rn satisfying the inequalities below, intersected with M :( ∧
1≤j≤m

xj ≤ x+j ≤ xj

)
∧

( ∧
1≤i≤n

mi ≤ y+i ≤Mi

)
∧

( ∧
1≤j≤m

−xj ≤ x−j ≤ −xj

)

∧

( ∧
1≤i≤n

−Mi ≤ y−i ≤ −mi

)
∧

(∧
i,j

mi − xj + δi,j ≤ y+i − x
+
j ≤Mi − xj − δi,j

)

∧

(∧
i,j

xj −Mi + δi,j ≤ y−i − x
−
j ≤ xj −mi − δi,j

)

∧

(∧
i,j

mi + xj ≤ y+i − x
−
j + γi,j ≤Mi + xj − γi,j

)

∧

(∧
i,j

−Mi − xj + γi,j ≤ y−i − x
+
j ≤ −mi − xj − γi,j

)

∧

( ∧
1≤i1,i2≤n

y+i1 − y
+
i2
≤ ∆i1,i2

)
∧

( ∧
1≤i1,i2≤n

y−i1 − y
−
i2
≤ ∆i2,i1

)

∧

( ∧
1≤i1,i2≤n

Li1,i2 ≤ y+i1 − y
−
i2
≤ Γi1,i2

)
Just like we did not have any non-redundant inequality on xi − xj , we have no
non-redundant inequality on xi + xj . Thanks to this reformulation, we can once
again use the translation procedure detailed in the proof of Theorem 2 to get
the internal tropical representation in the extended domain which constitutes
the result of this proposition.

E Proof of Theorem 1

Proof. It can be checked easily that the inequalities are equivalent to the inequal-
ities defining zone Hf in Proposition 3. For instance, inequality 3 is equivalent
to: (

xj − xj ≥ 0
)
∧

 ∧
1≤i≤n

(yi −Mi + δi,j ≤ xj − xj)


which is in turn equivalent to:

(
xj ≤ xj

)
∧

 ∧
1≤i≤n

(yi − xj ≤Mi − xj − δi,j)


F Embedding a tropical polyhedron: external description

In this paragraph, we treat the general case of multi-layer networks with an
external description. Tropical polyhedra is thus described here as sets of points
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X ∈ Rnmax satisfying the following tropical linear inequalities: A1X̃ ≥ A2X̃,
where A1 and A2 are two matrices of size m × (n + 1), X = (x1, . . . , xn) and
X̃ is the augmented vector (1, x1, . . . , xn). This allows for using the classical
homogenization trick, for representing affine inequalities as linear ones in an
augmented space: the first column of A1 and A2 represent the constant part of
the affine transformation.

When representing a pair of neural network layers (one input layer and one
output layer) with a tropical polyhedron, each node in each layer corresponds to
a dimension in the polyhedron and to a column in the matrices of the polyhedron.
Therefore, if the input layer has ni nodes and the output layer has ni+1 nodes,
the resulting matrices will have ni + ni+1 + 1 columns (and as many rows if
there are no subdivisions, one for each inequality): one column for the constants
(in orange below), ni columns for the input nodes (numbered from 1 to ni, in
red below) and ni+1 columns for the output nodes (numbered from ni + 1 to
ni + ni+1, in blue below).

In order to embed a polyhedron to a higher-dimensional space, we need to
add columns filled with −∞ corresponding to the new dimensions.

Suppose that we have a polyhedron Pi ⊂ S{Li,Li+1} representing relations
between layers i and i + 1. This polyhedron is described by two matrices A1

and A2 such as A1X̃ ≥ A2X̃. Below, we colored in orange the first column, that
encodes the affine part of the transformation, the part encoding Li is the set of
columns in red, and the part encoding Li+1 is the set of columns in blue:

Aj =

a1,0 a1,1 . . . a1,ni a1,ni+1 . . . a1,ni+ni+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am,0 am,1 . . . am,ni

am,ni+1 . . . am,ni+ni+1


We get the two matrices corresponding to Emb(Pi, {Li−1, Li, Li+1)) by inserting
a block of −∞, depicted in gray below, corresponding to layer i− 1, right after
the first column (representing the affine part of the transformation):

Emb(Aj , {Li−1, Li, Li+1}) =

a1,0 −∞ . . . −∞ a1,1 . . . a1,ni a1,ni+1 . . . a1,ni+ni+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am,0 −∞ . . . −∞ am,1 . . . am,ni

am,ni+1 . . . am,ni+ni+1


We get the two matrices corresponding to Emb(Pi, {Li, Li+1, Li+2}) by inserting
a block of −∞, depicted in gray below, corresponding to layer i− 1, right after
the last column:

Emb(Aj , {Li, Li+1, Li+2}) =

a1,0 a1,1 . . . a1,ni a1,ni+1 . . . a1,ni+ni+1 −∞ . . . −∞
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am,0 am,1 . . . am,ni

am,ni+1 . . . am,ni+ni+1
−∞ . . . −∞



G Proof of Theorem 3

Proof. Let I ⊂ [1,m] such that Equations 6 hold.
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First, we prove that this implies that:

∀p ∈ P,∃j ∈ I s.t. p⊕ pj = p (7)

Let i ∈ [1,m]. Let Spi = {p ∈ P : pj < pi}. If Spi = ∅, then i ∈ I, thus we
have j = i ∈ I s.t. pj ≤ pi. Otherwise, for p ∈ Spi , we have Sp ( Spi from the
transitivity and the irreflexivity of <. Since P is finite, we can prove the theorem
by induction.

Suppose for k ≥ 0, ∀p ∈ P , if #Sp ≤ k, then there exists j ∈ I s.t. pj ≤ p.
The base case is Sp = ∅ which we have proven true.
Let p ∈ P s.t. #Sp = k + 1 > 0. Let p′ ∈ Sp. We have Sp′ ( Sp, thus

#Sp′ ≤ k and, from the induction hypothesis, there exists j ∈ I s.t. pj ≤ p′ < p.
Therefore the induction hypothesis holds for k + 1.

Therefore, for p ∈ P , there exists j ∈ I s.t. pj ≤ p.

Now, let X = (xi, . . . , xn) ∈ H. Let λ ∈ Rmmax such that X =
m⊕
i=1

λipi with

m⊕
i=1

λi = 0. Take any xn+1 ∈ [a, b]. We have Y = (x1, . . . , xn, xn+1) ∈ H ′ by

definition. Note also that
m⊕
i=1

λi = 0, so there exists i ∈ [1,m] such that λi = 0.

If i ∈ I, let j = i, otherwise, there exists j ∈ I such that pj ≤ pi by the previous
Equation 7.

In both case, we have j ∈ I such that pj ≤ pi ≤ X, thus pj ⊕X = X. Let

now λn+1 = xn+1 − b ≤ 0. We have
m⊕
i=1

λipi ⊕ λm+1pj = X ⊕ λm+1pj = X.

Let p′i = (pi, a) for 1 ≤ i ≤ m and p′m+1 = (pj , b). We have
m+1⊕
i=1

λip
′
i =

(X, a ⊕ λm+1b) = (X, a ⊕ xn+1) = (X,xn+1) = Y . For i ∈ [1,m]: pi ∈ H thus
p′i ∈ H ′, and pj ∈ H therefore p′m+1 ∈ H ′.

Therefore P ′ = (pi, a)1≤i≤m, (pi, b)i∈I generates H ′.

H Proof of Theorem 2

Proof. We verify that the internal description matches the external one. To do so,
we ensure that every point which is in the tropical convex hull of (A,B1, . . . , Bm,
C1, . . . , Cn) is inside the polyhedron defined externally and conversely.

Let Hext = {(x1, . . . , xm, y1, . . . , yn)} the polyhedron defined externally as in
Theorem 1 and let Hint be the polyhedron defined internally as in Theorem 2.

We note the following properties:

∀(i, j) ∈ [1, n]× [1,m], δi,j ≤ xj − xj and δi,j ≤ |wi,j |(xj − xj) (8)

Moreover,

∀i ∈ [1, n],Mi −mi =

m∑
j=1

|wi,j |(xj − xj) ≥
m∑
j=1

δi,j (9)
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Thus,
∀(i, j) ∈ [1, n]× [1,m],Mi −mi ≥ δi,j (10)

Finally, as di1,i2 = mi2+wi1,0−wi2,0+
∑

wi1,j<wi2,j

xj(wi1,j−wi2,j)+
∑

wi1,j>wi2,j

xj

(wi1,j − wi2,j), we have, for all i1, i2 ∈ [1, n], i1 6= i2:

mi1 − di1,i2 = wi1,0 +
∑

wi1,j<0

wi1,jxj +
∑

wi1,j>0

wi1,jxj − wi2,0 −
∑

wi2,j<0

wi2,jxj

−
∑

wi2,j>0

wi2,jxj − wi1,0 + wi2,0 −
∑

wi1,j<wi2,j

xj(wi1,j − wi2,j)

−
∑

wi1,j>wi2,j

xj(wi1,j − wi2,j) (11)

Rearranging the terms and separating the sums into the four cases, wi1,j <
wi2,j < 0, wi1,j > wi2,j > 0, wi1,j > 0 ≥ wi2,j and wi1,j < 0 ≤ wi2,j , we get:

mi1 − di1,i2 =
∑

wi1,j<wi2,j<0

(xj − xj)(wi1,j − wi2,j)

−
∑

wi1,j>wi2,j>0

(xj − xj)(wi1,j − wi2,j)−
∑

wi1,j>0≥wi2,j

(xj − xj)wi1,j+∑
wi1,j<0≤wi2,j

(xj − xj)wi1,j ≤ 0 (12)

A similar calculation shows that

Mi1 − di1,i2 ≥ 0 (13)

We also have:

di1,i2 −mi1 ≥
∑

wi1,j>wi2,j>0

(xj −xj)(wi1,j −wi2,j) +
∑

wi1,j>0≥wi2,j

(xj −xj)wi1,j

≥ wi1,j(xj − xj) for all i1 such that wi1,j > 0 and any i

(14)

The last inequality is valid since all summands are positive. For the same reasons,

di1,i2−mi1 ≥ (xj−xj)(wi1,j−wi2,j) ∀i1, i2 such that λi1,j > λi2,j and any j

(15)

Similarly,

ci1,i2−Mi2 =
∑

0<wi1,j<wi2,j

(xj−xj)(wi1,j−wi2,j)−
∑

0>wi1,j>wi2,j

(xj−xj)(wi1,j

− wi2,j)−
∑

wi1,j≤0<wi2,j

(xj − xj)wi2,j +
∑

wi1,j≥0>wi2,j

(xj − xj)wi2,j ≤ 0 (16)
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And, by a similar calculation,

ci1,i2 −mi2 ≥ δi2,j (17)

We first prove Hint ⊂ Hext, by proving that every extreme point of Hint is in
Hext, i.e. that every extreme point defined in Theorem 2 matches all constraints
defined in Theorem 1.

Consider first generator A = (x1, . . . , xm, y1, . . . , yn) = (a1, . . . , am,m1, . . . ,
mn) and take any (i, j) ∈ [1, n]× [1,m]. First, obviously, xj − bj = xj − xj ≤ 0,
so A satisfies the first inequality of Equation (2) of Theorem 1. Also, yi −Mi =
mi−Mi ≤ 0, which is the second part of Equation (2). Similarly, xj−aj = 0 ≥ 0
and yi −Mi = mi −Mi ≤ −δi,j by Equation (10), which is the first part of
Equation (3). Finally, yi − mi = 0 ≥ 0 and xj − xj = xj − xj ≤ −δi,j by
Equation (8), and for all i1, i2 ∈ [1, n]: yi1−di1,i2 = mi1−di1,i2 ≤ 0 by Equation
(12), and as 0 = yi2 −mi2 , we conclude that yi1 − di1,i2 ≤ yi2 −mi2 , which is
Equation (4) of Theorem 1. Therefore, A ∈ Hext.

Consider nowBj = (x1, . . . , xm, y1, . . . , yn) = (xj , . . . , xj−1, xj , xj+1, . . . , xm,
m1+δ1,j , . . . ,mn+δn,j) for some j ∈ [1,m], and take any (i, j′) ∈ ([1, n]×[1,m]\
{j}) We have easily xj − xj = 0 ≤ 0, xj′ − xj′ = xj′ − xj′ ≤ 0 and yi −Mi =
mi−Mi+δi,j ≤ 0 which is Equation (2) of Theorem 1. Also, xj−xj = xj−xj ≥ 0,
xj′ − xj′ = 0 ≥ 0, yi−Mi + δi,j = mi−Mi + 2δi,j ≤ δi,j ≤ xj − xj = xj − xj by
Equations (8) and (10), and yi−Mi + δi,j′ = mi−Mi + δi,j + δi,j′ ≤ 0 by Equa-
tion (9). More precisely, this last inequality is obtained as follows: Equation (9),

Mi−mi ≥
m∑
j=1

δi,j implies, since all the δi,j are positive, that Mi−mi ≥ δi,j+δi,j′ ,

therefore, mi −Mi ≤ −δi,j − δi,j′ , i.e. mi −Mi + δi,j + δi,j′ ≤ 0.
Finally, yi −mi = δi,j ≥ 0, xj − xj + δi,j = δi,j = yi −mi, thus, trivially,

xj − xj + δi,j ≤ yi −mi, xj′ − xj′ + δi,j′ = xj′ − xj′ + δi,j′ ≤ 0 by Equation (8),
thus, xj′ − xj′ + δi,j′ ≤ yi −mi which are Equations (3).

Now, consider any i1, i2 ∈ [1, n]. Then yi1 − di1,i2 = δi1,j + mi1 − di1,i2 ,
therefore yi1 − di1,i2 ≤ δi1,j by Equation (12). If δi1,j ≤ δi2,j , then yi1 − di1,i2 ≤
δi1,j ≤ δi2,j = yi2 − mi2 . Otherwise, δi1,j > δi2,j ≥ 0 implies wi1,j > 0 by
definition of δi1,j . By Equation (14), since wi1,j > 0, di1,i2 −mi1 ≥ wi1,j(xj −
xj), which is greater or equal than δi1,j by Equation (8). If we suppose now
wi2,j ≤ 0, then, by definition, δi2,j = 0, and this is in turn greater or equal
than δi1,j = δi1,j − δi2,j . Otherwise, if wi2,j ≥ 1, then δi1,j = δi2,j = xj − xj and
di1,i2−mi1 ≥ δi1,j−δi2,j = 0. Finally, if 0 < wi2,j < 1, then δi2,j = wi2,j(xj−xj)
and, by Equation (15), di1,i2 −mi1 ≥ (xj − xj)(wi1,j −wi2,j) = wi1,j(xj − xj)−
δi2,j ≥ δi1,j − δi2,j . Therefore, in every case, δi1,j − δi2,j ≤ di1,i2 −mi1 . Thus,
yi1 − di1,i2 ≤ δi2,j = yi2 −mi2 . We conclude that Bj ∈ Hext.

Consider now Ci = (x1, . . . , xm, y1, . . . , yn) = (x1+δi,1, . . . , xm+δi,m, ci,1, . . . ,
ci,i−1,Mi, ci,i+1, . . . , ci,n) for some i ∈ [1, n], and take any (i′, j) ∈ ([1, n]\{i})×
[1,m].

We have xj − xj = xj − xj + δi,j ≤ 0 by Equation (8), yi −Mi = 0 ≤ 0
and yi′ −Mi′ = ci,i′ −Mi′ ≤ 0 by Equation (16), which shows that Ci satisfies
Equation (2). Then, xj − xj = δi,j ≥ 0, by definition of δi,j , yi −Mi + δi,j =
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δi,j = xj − xi by definition of xj , yi′ −Mi′ + δi′,j = ci,i′ −Mi′ + δi′,j ≤ δi′,j by
Equation (16), which is equal to xj − xj by definition of x1. These inequalities
are exactly Equation (3) of Theorem 1.

Finally, yi − mi = Mi − mi ≥ 0, yi′ − mi′ = ci,i′ − mi′ ≥ 0 since ci,i′ =
Mi−di,i′ +mi′ by definition of ci,i′ , and by Equation (13). Also, xj−xj + δi,j =
xj − xj + 2δi,j ≤ δi,j ≤ Mi −mi by Equation (8) and then by Equation (10),
xj−xj+δi′,j = xj−xj+δi,j+δi′,j ≤ δi′,j ≤ ci,i′−mi′ by Equation (17). We also
have yi′ − di′,i = ci,i′ − di′,i = Mi −mi = yi −mi by definition of ci,i′ and of yi,
and yi− di,i′ = Mi− di,i′ = ci,i′ −mi′ = yi′ −mi′ . Finally, for all (i1, i2) ∈ [1, n]:
yi1 − di1,i2 = ci,i1 − di1,i2 = Mi + mi1 − di,i1 − di1,i2 ≤ Mi − di,i2 = ci,i2 −mi2

which ends the proof that Cj enjoys Equation (4).
Therefore, Cj ∈ Hext and Hint ⊂ Hext.
We then prove Hext ⊂ Hint

3 by proving that every point in Hext is a tropical
convex linear combination of the extreme points of Hint.

Let P = (x1, . . . , xm, y1, . . . , yn) ∈ Hext and

P ′ = (x′1, . . . , x
′
m, y

′
1, . . . , y

′
n) (18)

= max

(
A,

m
max
j=1

(Bj + (xj − xj)),
n

max
i=1

(Ci + (yi −Mi))

)
(19)

P ′ is given as a tropical convex linear combination of generators A, Bj and Ci
and thus is in Hint since

max

(
0,

m
max
j=1

(xj − xj),
n

max
i=1

(yi −Mi)

)
= 0

We show that P = P ′ hence Hext ⊂ Hint

For any j ∈ [1,m],

x′j = max

(
xj , xj + xj − xj , max

j′∈[1,m],j 6=j′
(xj + xj′ − xj′),

n
max
i=1

(xj + δi,j + yi −Mi)

)
But, for all j′ ∈ [1,m] and j 6= j′, xj′ ≤ xj′ thus max

j′∈[1,m],j 6=j′
(xj + xj′ − xj′) ≤

xj ≤ xj . Similarly, for all i ∈ [1, n]: yi −Mi + δi,j ≤ xj − xj by Equation (3),

thus
n

max
i=1

(xj + δi,j + yi −Mi)) ≤ xj . Thus x′j = xj .

Now for any i ∈ [1, n],

y′i = max

(
mi, yi,

m
max
j=1

(mi + δi,j + xj − xj), max
i′∈[1,n],i6=i′

(ci′,i + yi′ −Mi′)

)
We know by Equation (4) that for all j ∈ [1,m]: xj − xj + δi,j ≤ yi −mi thus
m

max
j=1

(mi+δi,j +xj−xj) ≤ yi. Similarly, for all i′ ∈ [1, n], i 6= i′: yi′+ci′,i−Mi =

3 Equivalently, we could have determined the external representation we have is the
one deduced from the extremal points, by computing the polar cone, i.e. the dual of
the tropical polyhedron defined by its extreme points, and take the extreme points
of this dual: this gives the external representation of the tropical polyhedron, see
e.g. [4].



38 E. Goubault et al.

yi′ − di′,i + mi by definition of ci,i′ , but by Equation (4), this is less or equal
than yi thus max

i′∈[1,n],i6=i′
(ci′,i + yi′ −Mi′)) ≤ yi. Therefore y′i = yi and P = P ′.

We conclude that P ∈ Hint and (A,B1, . . . , Bm, C1, . . . , Cn) generates Hext.
Therefore Hext ⊂ Hint, and thus Hext = Hint.

Finally, we prove that every generator A, Bj and Ci is an extreme generator
of the polyhedron. This ensures minimal presentation for Hint.

We know from [5] that a point g is extreme in a tropical polyhedron C ⊂
Rdmax if there exists 1 ≤ t ≤ d such that g is a minimal element of the set
{x ∈ C, xt = gt}. In that case, g is said to be an extreme of type t. Consider
now any P = (x1, . . . , xm, y1, . . . , yn) ∈ H.

We see first that for all (i, j) ∈ [1, n]× [1,m], xj ≤ xj and mi ≤ yi, meaning
precisely that A is an extreme generator of H.

Fix now j ∈ [1,m]. Take P as above, such that xj = xj . Then for all j′ ∈
[1,m], j 6= j′: xj′ ≤ xj′ . We also have for all i ∈ [1, n]: mi + δi,j ≤ yi since by
Equation (4), yi −mi ≥ xj − xj + δi,j = δi,j because we suppose xj = xj . This
means that Bj is an extreme generator of type j of H.

Finally, fix i ∈ [1, n] and take P as above such that yi = Mi. Then, for all
j ∈ [1,m], by Equation (3), xj−xj ≥ yi−Mi+δi,j , but as we supposed yi = Mi,
this implies xj+δi,j ≤ xj . We also have that for all i′ ∈ [1, n], i 6= i′, by Equation
(4), yi′−mi′ ≥ yi−di,i′ so yi′ ≥ yi−di,i′+mi′ , but as we supposed that yi = Mi,
we have ci,i′ = Mi − di,i′ +mi′ ≤ yi′ . This shows that Ci is an extreme of type
i+m of H.

Therefore, all points in (A,B1, . . . , Bm, C1, . . . , Cn) are extreme points of
Hint.

I Proof of Theorems 4 and 5

Theorem. (Theorem 4) A sound abstraction as a tropical polyhedron P of the
graph of f over [a, b] given by subdividing the domain in N sub-intervals has
the following external representation of N + 2 tropical inequalities:
P is defined by the two constraints x ≤ b, a ≤ x and the following N

constraints, for all k from 0 to N − 1, depending on the value of λ:

– If λ ≤ 0, 0 ≤ max(x− ck, y − f(ck)).
– If 0 ≤ λ ≤ 1, y − f(ck) ≤ max(0, x− ck).
– If λ ≥ 1, x− ck ≤ max(0, y − f(ck)).

P can also be internally represented as the tropical convex hull of at most N + 2
extreme points A, B and Ci, i ∈ [1, N ] with A = (a, f(a)), B = (b, f(b)), and
C is (ci−1, f(ci)) if λ ≤ 0, (ci−1 + f(ci) − f(ci−1), f(ci)) if 0 ≤ λ ≤ 1 and
(ci, f(ci−1) + ci − ci−1) if λ ≥ 1.
Theorem. (Theorem 5) A sound and tighter over-approximation of Gf than
the one of Theorem 1 is given externally by the tropical constraints of Theorem 1
plus the following constraints, for any subdivision c0i = ai, . . . c

N
i = bi of intervals

[ai, bi], i = 1, . . . ,m in N subintervals:
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– If λi,j ≤ 0, then we add the constraint 0 ≤ max(xi−cki , yj−mj+λi,j(bi−cki )).
Otherwise if 0 ≤ λi,j ≤ 1, we add the constraint yj −Mj + λi,j(bi − cki ) ≤
max(0, xi− cki ). And finally, we add xi− cki ≤ max(0, yj−mj−λi,j(cki −ai))
if λi,j ≥ 1.

– Let Ij− ⊂ [1,m], maximal, such as for all i ∈ Ij−, λi,j ≤ 0. We write
σj− =

∑
i∈Ij−

λi,j(bi − cki ). Then, we add the constraint 0 ≤ max(yj −mj +

σj−, max
i∈Ij−

(xi − cki )).

– Let Ij0 ⊂ [1,m], maximal, such as for all i ∈ Ij0, 0 ≤ λi,j ≤ 1 and
∑
i∈Ij0

λi,j ≤

1 and let σj0 =
∑
i∈Ij0

λi,j(bi−cki ). Then we add the constraint yj−Mj+σj0 ≤

max(0,max
i∈Ij0

(xi − cki )).

– Finally, for any J subset of [1, n], let σi,J =
∑
j∈J

λi,j and mJ = σ0,J +∑
σi,J<0

σi,Jbi+
∑

σi,J>0
σi,Jai. For j ∈ J , let uj ∈ [mj ,Mj ] such as

∑
j∈J

uj = mJ :

we add the constraint 0 ≤ maxj∈J(yj − uj).

Proof. Let (i, j) ∈ [1,m]×[1, n] and cki ∈ [ai, bi] be any of the cki , k = 0, . . . , N−1.
We have:

– Suppose λi,j ≤ 0. Then if xi ≤ cki , yj ≥ mj−λi,j(bi−cki ), otherwise xi−c ≥ 0.
This can be summarized tropically as 0 ≤ max(xi−cki , yj−mj+λi,j(bi−cki ).

– If 0 ≤ λi,j ≤ 1, then suppose first that xi ≤ cki . Then yj ≤Mj−λi,j(bi−cki ).
Otherwise yj−Mj ≤ xi−cki −λi,j(bi−cki ). Overall: yj−Mj +λi,j(bi−cki ) ≤
max(0, xi − cki ).

– Finally, if λi,j ≥ 1, then suppose first that xi ≥ cki . Then yj−mj ≥ xi−cki +
λi,j(c

k
i − ai). Otherwise, xi − cki ≤ 0. To summarize, in this case: xi − cki ≤

max(0, yj −mj − λi,j(cki − ai))

Now, there are also extra relations between the xis and any of the yjs.
Consider any ck = (ck1 , . . . , c

k
m ∈ [a1, b1]× . . .× [am, bm] and j ∈ [1, n].

– Let Ij− ⊂ [1,m], maximal, such as for all i ∈ Ij−, λi,j ≤ 0. We write σj− =∑
i∈Ij−

λi,j(bi−cki ).Then, if for all i ∈ Ij−, xi ≤ cki , then yj ≥ mj−σj−. Other-

wise, maxi∈Ij−(xi− cki ) ≥ 0. Overall: 0 ≤ max(yj −mj +σj−,maxi∈Ij−(xi−
cki )).

– Let Ij0 ⊂ [1,m], maximal, such as for all i ∈ Ij0, 0 ≤ λi,j ≤ 1 and
∑
i∈Ij0

λi,j ≤

1. Let σj0 =
∑
i∈Ij0

λi,j(bi−cki ). Now, if for all i ∈ Ij0, xi ≤ cki , then yj ≤Mj−

σj0. Otherwise, let imax ∈ Ij0 such that ximax − ckimax
is maximized. In this

case we have yj −Mj + σj0 ≤
∑
i∈Ij0

λi,j(xi − cki ) ≤
∑
i∈Ij0

λi,j(ximax − ckimax
) ≤

ximax
−ckimax

. Overall, we have the affine tropical constraint: yj−Mj+σj0 ≤
max(0,maxi∈Ij0(xi − cki )).
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There are also relations between the yjs. Consider any subset J of [1, n]

and σi,J =
∑
j∈J

λi,j . Then,
∑
j∈J

yj =
∑
j∈J

λ0,j +
m∑
i=1

λi,jxi ≥ σ0,J +
∑

σi,J<0
σi,Jbi +∑

σi,J>0
σi,Jai = mJ . For j ∈ J , let uj ∈ [mj ,Mj ] such as

∑
j∈J

uj = mJ .

Suppose that for all j ∈ J , yj ≤ ckj . Then
∑
j∈J

yj ≤
∑
j∈J

uj = mJ , which is

absurd. Therefore 0 ≤ maxj∈J(yj − uj).
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