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Abstract— In this paper, we use the concept of artificial
risk fields to predict how human operators control a vehicle
in response to upcoming road situations. A risk field assigns
a non-negative risk measure to the state of the system in
order to model how close that state is to violating a safety
property, such as hitting an obstacle or exiting the road. Using
risk fields, we construct a stochastic model of the operator
that maps from states to likely actions. We demonstrate our
approach on a driving task wherein human subjects are asked
to drive a car inside a realistic driving simulator while avoiding
obstacles placed on the road. We show that the most likely risk
field given the driving data is obtained by solving a convex
optimization problem. Next, we apply the inferred risk fields to
generate distinct driving behaviors while comparing predicted
trajectories against ground truth measurements. We observe
that the risk fields are excellent at predicting future trajectory
distributions with high prediction accuracy for up to twenty
seconds prediction horizons. At the same time, we observe some
challenges such as the inability to account for how drivers
choose to accelerate/decelerate based on the road conditions.

I. INTRODUCTION

We consider the problem of systematically modeling
human control actions inside an intelligent transportation
system. Ideally, such a model would enable interpretable
explanations of why human drivers make certain control
decisions in a given situation. Moreover, a model of driver
decisions should be able to capture the variation in human
driving behavior and emulate qualitatively different driving
behaviors. Such models of human drivers can be quite
helpful in developing autonomous vehicles that behave in
a predictable manner and are able to operate on roads with
human-driven vehicles [1], [2]. Furthermore, driver models
can potentially be used in applications such as run-time
monitoring of human drivers to predict dangerous driving
behaviors wherein the actions of the driver are “far away”
from those expected by our model.

In this paper, we consider probabilistic models of human
actions by building upon the concept of artificial risk fields.
Such risk fields map states of the system to non-negative
risk values, wherein larger risk values imply the state is
close to a violation. The choice of a control action from
a given state by the human operator follows from the risk
model in a simple way: the probability that a given control
action is chosen is proportional to the exponential of the
risk at the state that is reached at a fixed preview time by
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applying that action. We develop this idea in the context of
human control of a car wherein the human operator is tasked
with driving the car safely along a road while staying in the
designated lane, and at the same time, avoiding obstacles
placed on the road. We first show how a family of possible
risk functions can be formulated for such tasks, wherein
each risk function is obtained by instantiating some unknown
parameters to a specific values. We demonstrate how the risk
function can yield a probability distribution over possible
choices of control input that a human operator may select
from a given state, assuming a fixed preview time. We also
consider the problem of inferring risk functions from actual
human operator data. In particular, we show that deriving
maximum likelihood risk function parameters for a class of
“additive” risk functions reduces to a convex optimization
problem that can be solved to global optimum.

We evaluate the proposed framework on data collected
from human drivers inside a simulated driving environment,
wherein the humans are tasked to drive the vehicle along
a fixed course while avoiding obstacles placed along the
vehicle’s path. Using data from six different drivers with up
to four trials around the course for each driver, we show that
our approach can fit parameters for risk models in each case.
We explore the interpretation of these parameters showing
how they predict qualitatively different behaviors. Next, we
evaluate the ability of our model to predict future trajectories
that are close to the ground truth trajectories. Here, we show
that our model can provide very accurate predictions with
errors that lie within a few meters for predicting the position
20 seconds out into the future. However, at the same time our
model is less accurate for predicting how drivers accelerate
or decelerate over different portions of their driving tasks.

The main contributions in this paper are as follows: (a)
We formalize the risk field-based approach that has been
proposed by many researchers in the past [3]–[6]. A key
contribution lies in formalizing the driver model based on a
risk field as a stochastic model and providing approaches to
discovering model parameters from naturalistic data. (b) We
instantiate our framework to a driving simulator-based study
of human operators driving a vehicle around in a simulated
course with obstacles. (c) Our empirical evaluation shows
that risk field-based approach can provide reasonable predic-
tions of future trajectories. (d) Finally, we systematically vary
risk field parameters to generate distinct driver behaviors.

II. RELATED WORK

Munir et al. [7] discuss the main challenges facing feed-
back control with human-in-the-loop; in particular, they



discuss the need for developing systematic models of human
behavior. Previous approaches to modeling driver behavior
rely on cognitive models of human information processing.
Salvucci and Gray [8] exploit the tendency of a driver’s
gaze to fixate on a near and far point. Subsequent work by
Salvucci [9] used models of human declarative and proce-
dural knowledge in the ACT-R cognitive architecture [10]
to simulate steering angle and lateral position for navigat-
ing curves. Our work also models human operator control
choices in a systematic manner. The key differences are
two-fold: our model predicts a distribution over possible
control inputs rather than a fixed prediction based on the
state. Also, unlike the works mentioned above, we do not
aim to model the mental processes that underlie the driver’s
decision making.

Other work captures driver behaviors in a qualitative
manner. For example, Zhang et al [11] characterized drivers
as novices or experts using a pattern recognizer on steering
inputs. Similarly, Filev et al [12] used a rule-based system
to classify drivers as cautious or aggressive based on the
variation in their braking and acceleration behaviors. Finally,
Wang et al [13] used k-means clustering to identify key
characteristics of long-term driving behaviors such as pru-
dence, stability, conflict proneness, and skillfulness. These
approaches aim to develop driver profiles. Our approach can
be interpreted similarly by examining the relative weights
of the risk model components; we can additionally apply
artificial risk fields as a generative model of future behavior.

Recent methods in modeling operator behavior are based
on navigating “interaction fields” in the task environment
[5]. Foundational work by Gibson et al [4] hypothesizes
that humans navigate a “field of safe travel” by evaluating
possible paths based on subjective experience and objec-
tive physical limitations. In the recent work of Kolekar
et al [14], participants in a driving simulator were asked
to react to obstacles placed at varying positions relative
to their vehicle. Based on recorded reactions, the authors
constructed a “driver’s risk field” surrounding the vehicle.
In a subsequent work [6], they then quantified a driver’s
perceived risk as the product of their risk field and the
cost of certain events (colliding with obstacles). This leads
to a controller which generates human-like behavior in a
variety of scenarios when set to maintain risk under a certain
threshold. The motivation of this paper is similar to the work
of Kolekar et al [6], [14] in that we seek an interpretable and
generative model of driving behavior grounded in theories of
human reasoning and decision making. Our approach differs
from the above work in several important respects. First, we
define a risk field as a characteristic of the task environment
and control inputs selected by the operator. The operator
then stochastically navigates this risk space with the goal
of minimizing risk. A second distinction is that because the
risk fields presented here are defined in the task environment,
they extend to other scenarios besides driving.

Our approach is closely related to inverse reinforcement
learning where the vehicle model and operator’s actions
are captured by a Markov Decision Process (MDP) model

with unknown reward functions. The goal is to infer these
unknown rewards either through solving an optimization
problem [15], [16] or through Bayesian methods [17]. There
has been a long history of using inverse reinforcement to
explain the actions of human operators inside a known
environment [18]. The recent work of Ozkan et al studies
how inverse reinforcement learning can be used to learn a
driver model that is able to predict lead vehicle following
behaviors of human drivers in a 3D driving simulation
environment [19]. Our approach bears many similarities to
inverse reinforcement learning: for instance, we can view
risk fields as a (negative) “reward” function that the driver is
minimizing. However, some key differences exist: we explic-
itly consider a “preview time” that the operator looks ahead
into the future. This allows us to keep our risk functions
simple since they apply to the state that is reached at some
time in the future. Inverse reinforcement learning approaches
compute rewards/risks that apply to the current state. This
means that they have to consider more complicated functions
than we do. As a result of our setup, we also have the benefit
of solving a convex optimization problem and thus guarantee
that we can compute the most likely model.

Rather than modeling the driver’s risk perception and
control choice, data-driven approaches such as Kim et al [20]
and Long et al [21] train recurrent neural networks that
input numerous features such as the vehicle’s past trajec-
tories and from its surrounding environment to predict the
future trajectories of the vehicle. While these approaches are
promising as predictors of future trajectories, they require a
larger volume of data to reliably train and test a recurrent
neural network. It is often challenging to interpret variations
between drivers or in general understand these models once
they are trained. Nevertheless, data driven approaches have
proven more versatile and capable of handling many more
situations than our approach in this paper. Our work is
currently aimed towards more narrowly defined settings
although we hope to generalize it in future iterations of our
framework to handle a richer variety of driving scenarios.

III. ARTIFICIAL RISK FIELDS

We describe a general approach to defining human opera-
tor behavior using artificial risk fields. Subsequently, we will
apply the framework to a driving task in Section IV.

A. Problem Formulation

We consider a single vehicle inside a known environment
of states x ∈ X . The human driver’s task is to control the ve-
hicle from a starting configuration A to a goal configuration
B. Additionally, we designate a set of obstacles O1, . . . , Om;
each obstacle Oi ⊆ X represents an unsafe configuration.
It may also be natural to specify a “desired” path π that
connects the start to the end state, that the vehicle should
stay close to (Figure 1).

The vehicle is modeled by its dynamics: dx
dt =

f(x(t),u(t)), wherein x(t) models the state at some time
t and u(t) ∈ U models the action (control input) at time t
and U is the set of actions available to the human driver. The
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Fig. 1. Schematic diagram of the overall task setup showing initial set of
states A, target set B, obstacles Oi and optionally a reference path.

function f is assumed to be a fixed and known state update
function. Our approach makes some key assumptions about
the behavior of the human operator:

1) The operator knows the state x, or at least, those state
variables involved in choosing the control.

2) The operator model is Markovian — i.e, the probability
distribution depends on the current state x and not
necessarily on the path taken to reach the state.

Whereas the assumptions above are somewhat restrictive,
we note that our goal is to build a model that predicts the
operator’s decision making rather than capture the mental
processes involved in the decision making.

The overall goal of this paper is to predict what control
actions are likely to be chosen by the human operator at
a given state. That is, we seek to model the probability
distribution of P(u|x) that an action u that is chosen by the
human operator at state x. Our model makes the following
assumptions about the operator’s control selection strategy:

1) Each state x ∈ X is associated with a non-negative risk
value risk(x;p) which provides an aggregate numerical
score, wherein p denotes a set of parameters that may
be specific to an individual operator at a given time. The
higher the risk score associated with a state, the closer
it is to being a property violation such as entering a
forbidden obstacle region or deviating too far from a
desired path.

2) The operator plans ahead to some “preview” time δp >
0 into the future.

3) The operator’s decision making balances two factors:
the risk of the future state that would be reached if a
particular control were chosen against the magnitude of
the control input. Thus, the operator would prefer not to
apply extreme values of brakes/acceleration or steering
inputs while at the same time they would prefer to stay
away from obstacles and close to the center of their
designated lane.

We will first describe each component of the model
starting with the risk function. Next, we will describe how
the overall probability distribution is defined.

B. Risk Function

The risk may be defined by many factors including the
proximity of the state to various obstacles and the deviation
of the state from the desired path π. The risk function

risk(x;p) is given by:
m∑
j=1

pjobstacleRisk(x, Oj) + pm+1deviationRisk(x, π) ,

wherein obstacleRisk(x, Oj) is a function that measures the
risk connected with the state x being inside (or close to)
the obstacle Oj , and deviationRisk(x, π) measures the risk
arising from the state x being far way the reference path
π (if one is given in the problem formulation). In general,
any function that ensures that the risk is monotonically
decreasing as one moves away from the obstacle can be
chosen. Similarly, deviationRisk(x, π) will be 0 if x lies
on the reference path, and increases monotonically as the
distance from the state x to the reference path π increases.

Finally, we note that the parameters p : (p1, . . . , pm+1)
are non-negative weights that model the relative weightages
associated with avoiding various obstacles and being close to
the reference path. The choice of these parameters will affect
the nature of the risk function. In Section V, we demonstrate
how parameters for a risk model are chosen given observed
experimental data.

C. Overall Operator Model

The next component of the risk model concerns the
assumption of a preview time. Let x be a current state
and u be a control action under consideration. We assume
that the operator computes the state x′ at some fixed time
δp > 0 in the future. In other words, let x′(u, δp) be the
state that results at time t + δp if the control action u
were chosen at time t and held constant. Also, we associate
a non-negative cost to each control action u denoted by
cost(u;q). Once again, the cost model can be parameterized
by a set of unknown parameters q that will be estimated from
experimental data.

The operator model we formulate assumes that

P(u|x) ∝ exp(−risk(x′(u, δp);p)− cost(u;q)) .

Suppose the set of possible actions U is a finite set
{u1, . . . ,uN}, then we write the exact expression as Eq. (1).
The denominator normalizes the probability over all actions.
For continuous set of control actions, we can replace the
summation by an integral over the set U . Doing so, we obtain
the following expression for P(u|x):

exp(−risk(x′(u, δp);p)− cost(u;q))∑N
j=1 exp(−risk(x′(uj , δp);p)− cost(uj ;q))

. (1)

The operator model implicitly assumes that (a) the op-
erator can forecast a future state x′(u) some time δp in the
future as a result of a control input u; and (b) chooses control
actions which yield future states with lower risk + cost values
preferentially over those with higher risk + cost values.

IV. DRIVING TASK

We describe the driving task that will be the central case-
study to motivate our work and develop a risk field model
specific to the task.



Fig. 2. (Left) Picture of the NADS miniSim setup showing a participant driving along a course (daytime simulation), (Right) plot of the centerline of the
simulated course showing obstacle placement as red circles.

A. Task Description

The driving task is performed in a medium-fidelity driving
simulation environment developed by the National Advanced
Driving Simulator (NADS miniSim) at Purdue Univer-
sity [22]. The system includes three high resolution monitors
for displaying the driving environment and a smaller monitor
for the vehicle dashboard display. The user controls a steering
wheel and foot pedals for acceleration and braking as in a
standard automobile (Figure 2, left).

Driving Scenario. The driving scenario consists of driving
the simulated vehicle at night time on a two lane city high-
way with four obstacles placed along the route. Illumination
using street lights was present. The overall simulated driving
course distance was roughly 4.8 km (3 miles). To increase
the difficulty of the task, participants were asked to drive
one handed with their non dominant hand. There were no
oncoming, leading, or trailing vehicles. The obstacles were
placed so that they were visible only after the participant
rounded the curve (Figure 2, right).

The objectives for the human driver are as follows:
1) The operator must practice safe driving by keeping

within their lane and minimizing deviations. They must
never exit the paved road.

2) Obstacles (a tire) placed in the operator’s lane are to be
avoided.

3) Vehicle speed is to be maintained as close as possible
to 45 mph (≈ 20 m/s) at all times.

Participants. The study was conducted with six partici-
pants (3 male, 3 female) with a mean age of 21.33 years
(SD = 0.82). Participants were all undergraduate students
at Purdue University 1, and were all engineering senior
undergraduate students. On average, the participants had
4.2 years of driving experience, with all of them reporting
having driven 10K or more miles per year, on average. The
participants were allowed to practice driving the vehicle on
the simulator using a daytime practice course that involved
an open highway.

1This study was approved by Purdue IRB number 1905022220

Data Collection. Each participant drove the course over
three (or in one case, four) separate trials, yielding nineteen
separate trials for the six participants, in total. Data collected
includes the position, velocity, heading angle, steering wheel
position, accelerator/brake pedal positions sampled at 60 Hz.

B. Risk Field Formulation

We will now derive risk models for the human driving
task. First, we will describe a simple unicycle model for the
vehicle’s dynamics. This model is appropriate since effects
such as cornering over tight turns, wheel slip and skids are
not important for the speed and road conditions that were
simulated in the study. The state of the vehicle is described
by x : (x, y, v, ψ), wherein x, y denote the position in a
fixed coordinate frame, v describes the velocity of the vehicle
and ψ is the heading angle. The control inputs are u1: the
acceleration (or deceleration) and u2: the turning rate. The
dynamics are described by the ODEs:

ẋ = v cos(ψ) ẏ = v sin(ψ)

v̇ = u1 ψ̇ = u2

}
(2)

We define the function ptLineDistance((x, y), C) as the
Euclidean distance from a given position (x, y) to the nearest
point in the center-line C.

Similarly, we are given a list of obstacle positions
O : [(xo,1, yo,1), · · · (xo,4, yo,4)]. Each obstacle has a
fixed diameter do = 0.3 meters. We define the function
obstacleDistance((x, y), O) as the Euclidean distance from a
given position (x, y) to the obstacle that will be encountered
next in the vehicle’s direction of travel.

The overall risk for a given state x : (x, y, v, ψ) and
control u is given by risk(x):

risk(x) :


A · ptLineDistance((x, y), C)2+
B · exp

(
− obstacleDistance((x,y),O)2

d2
o

)
+

C · (v − vtgt)
2

. (3)

and the cost of the control input is given by cost(u):

cost(u) : D · u21 + E · u22 . (4)



Data: risk, cost: risk/cost functions, x0: Initial State, δp: preview
time, δ: time step, ns: number of simulation steps,
U : {u1, . . . ,uN} all control inputs

Result: Sample Trajectory: x(0), . . . ,x(nsδ)
x(0) ← x0;
for s ← 1, · · · , ns do

for each uj ∈ U do
/* Simulate until the preview time. */
x′
j ← nextState(x(δ(s− 1)),uj , δp);

/* Calculate Risk. */
p(uj) ← exp(−risk(x′

j ;A,B,C)− cost(uj ;D,E));
end
sample u ∈ U with probability p(u)/

∑N
k=1 p(uk);

x(δs) ← nextState(x,u, δ) ; /* State for δs */
end

Algorithm 1: Algorithm for sampling a trajectory given
risk and cost functions, initial states.

Here A, . . . ,E ≥ 0 are unknown parameters whose values
will determine the actual tradeoffs that the driver makes
while staying in their lane and avoiding the obstacles during
the execution of the task.

We consider control inputs u1 ∈ {−1,−0.9, · · · , 0.9, 1}
(units are m/s2) and u2 ∈ {−0.5,−0.45, · · · , 0.45, 0.5}
(units are radians/s), yielding 400 discrete choices for
(u1, u2). For a given state x, the probability of control inputs
(u1, u2) being chosen P((u1, u2) | x) is described once again
by Eq. (1). Here we define the risk and costs by Eqs. (3)
and (4). The next state x′(u, δp) is obtained by simulating
the ODE in Eq. (2).

Algorithm 1 shows the overall algorithm for sampling a
trajectory from the risk model.

V. MODEL FITTING

A. Maximum Likelihood Estimation

In this section, we consider how to infer a risk field given
data in the form of states x(t) and controls u(t). We will
assume that the risks and costs are additive over component
functions as follows:

risk(x;p) :
m∑
j=1

pjfj(x), cost(u;q) :
l∑

i=1

qigi(u) . (5)

Note however, that we do not assume much for func-
tions fj , gi other than that they are non-negative and well-
defined over the relevant values of x,u. The parame-
ters for risk and cost functions are collected as a vector
(p1, . . . , pm, q1, . . . , ql). Assuming that the controls are cho-
sen from a finite set U : {u1, . . . ,uN}, fixing δp to be the
preview time and nextState(x,u, δp) being the state reached
starting from current state x if control u is applied for time
δp. Recall that the model chooses a control input u for a state
x in proportion to the risk and cost according to Eq. (1).

Let us assume that we are given driving data of the form
(x(ti),u(ti)) consisting of states and controls applied at
various times ti for i = 1, . . . ,M . Our goal is to find

risk parameters p,q for Eq. (5) that maximizes the overall
log-likelihood L(p,q) :

∑M
i=1 logP(u(ti)|x(ti)), wherein

P(u(ti)|x(ti)) is as given in Eq. (1).
Note that if the risk and cost models are additive as in

Eq. (5), then the overall log-likelihood L(p,q) is a concave
function for a fixed value of δp. This means that we can
solve the maximization problem of a concave function (or
alternatively minimization of a convex function) to obtain
a global optimum using standard off-the-shelf convex opti-
mization tools [23].

Theorem 1: If the risk and cost models are additive as in
Eq. (5), then the overall log-likelihood L(p,q) is a concave
function for a fixed value of δp.

Proof: The proof consists in observing that logP(u|x)
is concave function of p,q. Let x′(u) denote the value of
nextState(x,u, δp). Expanding Eq. (1) using the form of the
risk model in (5), we obtain an expression for logP(u|x)
in Eq. (6)

Since x,u are given to us in the data, the terms fj(x′(u))
and gi(u) are all fixed constants. Thus, as a function of p,q,
we note that logP(u|x) is the difference of a linear function
over p,q and the log-sum-exp of linear function over p,q.
This is a difference of a concave function and a convex
function, which is itself concave.The overall likelihood is
the sum of concave functions, and is concave.

B. Fitting Parameters From Obstacle Avoidance Data

In this section, we report on the application of the maxi-
mum likelihood minimization approach to the data obtained
from six human drivers in the NADS vehicle simulator, as
described in Section IV.

We recall that each participant drove along a road with ob-
stacles placed at periodic intervals. In particular, each “trial”
by a participant involved four encounters with the obstacle.
We will fit the risk model parameters using the data from
each obstacle, using the scipy.optimize module for
various values of δp ∈ {0.6, 0.8, 1.0, 1.2} seconds. The risk
functions used are described in Section IV-B and in particular
Eqs. (3) and (4). This yielded 19 trials × 4 obstacles = 76
fit models for each of the four δp values.

For each obstacle encounter, we selected the preview time
δp which maximizes the likelihood of the data. Of the four
δp values considered, 94.7% of fitted models achieved a
maximum likelihood using δp = 1.2 seconds. Thus, for a
car driven at 20m/s, the preview distance is 24 meters.

Table I shows the distribution of fit parameters as the
median value as well as extremely low (5th percentile) and
extremely high (95th percentile) values. We see that each
parameter takes on a different range of values, with the
parameter C (associated with staying close to the target
velocity of 20m/s) varying very little (0−0.025), whereas B
(associated with the weightage placed on obstacle avoidance)
encompasses a wide range (0− 110.86).

log P(u|x) :
{
−

∑m
j=1 pjfj(x

′(u))−
∑l

i=1 qigi(u)− log
(∑N

k=1 exp
(
−

∑m
j=1 pjfj(x

′(uk))−
∑l

i=1 qigi(uk)
))

(6)



TABLE I
DISTRIBUTION OF PARAMETERS FIT AROUND ONE OBSTACLE, USING

THE BEST PREVIEW TIME δp . THERE WERE 76 TOTAL FIT MODELS.

Quantile A B C D E
5% 0.248 0.000 0.000 0.000 14.233
50% 0.544 16.349 0.000 1.416 40.782
95% 0.939 110.864 0.025 11.827 99.543

TABLE II
DEVIATION (METERS) OF GENERATED TRAJECTORY FROM ACTUAL

HUMAN TRAJECTORY, ACROSS ALL SUCCESSFUL COURSE TRIALS.
RESULTS ARE REPORTED AT DIFFERENT TIMES FROM THE STARTING

POSITION (SECONDS)

1s 2s 5s 10s 20s
min 0.002 0.051 0.002 0.180 0.104
median 0.064 0.234 0.493 1.114 0.764
max 0.245 0.944 1.655 2.373 1.482

VI. EVALUATING DRIVER MODELS

We first provide a preliminary analysis to evaluate the
accuracy of our method for predicting driver trajectories.
Of the 19 initial recorded course trials, we removed any
trial where the driver collided with an obstacle, yielding 17
successful trials. For each successful trial, we fit risk field
parameters using the formulation in Section IV-B and the
driver data from the first two obstacles in the trial. Using
these parameters, we used Algorithm 1 to generate 100
trajectories for the held out data of the last two obstacles
in the trial. We used a preview time δp = 1.2 for all of the
trajectories based on the analysis from Section V-B.

To define a single trajectory for comparison with the actual
driver behavior, we took the median x and y value over
the 100 trajectories at each time point. We then defined the
divergence of the generated trajectory as the distance from
the median point to the line created by the human trajectory.
Table II shows the minimum, median, and maximum diver-
gence from the human trajectory at times t ∈ {1, 2, 5, 10, 20}
seconds from the initial position.

Table II shows that, like one would intuitively expect, the
deviation from the actual human trajectory increases over
time, except between 10 and 20 seconds. The change in
deviations may be a function of the course characteristics
(e.g., rounding a turn) and also show that our model can self-
correct based on the high-level priorities defined in the risk
field model. Additionally, these results show that the model
is able to predict the future position 20 seconds ahead with
an error of less than 3 meters. This is promising, given that
the lane width in the driving task was 3 meters.

Figure 3 shows sample (x, y) trajectories predicted by
our model and velocities over time for three separate initial
conditions drawn from the actual driver data. We also plot
the actual “ground-truth” data for each of these situations.
It is interesting to see that the simulated (x, y) trajectories
are viable trajectories that keep close to the center line while

avoiding obstacles. In the bottom row of Figure 3, we see that
the predicted velocity deviates from the true human driver
velocity by as much as 4 m/s, especially in cases where the
driver accelerates swiftly. The mean absolute difference in
predicted velocity versus actual velocities are 0.1 m/s for
predicting 1 seconds out into the future, 1.3 m/s for 10 sec-
ond prediction horizons and 2.5 m/s for 20 second horizon.
However, we also observe that our model has the tendency
to under-estimate the actual velocity around sharp turns: it
is likely that the driver allows the vehicle to move towards
the edge of their lane to reduce steering effort and allow
themselves to accelerate. We conclude that the participants
do not prioritize the instruction to maintain their velocity
around 20 m/s, while focusing more on maintaining their
lane position and avoiding obstacles. Modeling their choice
of velocities requires considerations that are subtly different
from their perceived risk such as their self-confidence.

VII. CHARACTERIZING DRIVER BEHAVIOR

Showing the overall accuracy of our model, we reach the
main research question, do the risk model parameters account
for different types of obstacle avoidance behavior? To answer
this, we will visualize generated trajectories using differ-
ent parameter configurations. For each condition, we used
Algorithm 1 to generate 20 trajectories around the course
segment for the first obstacle. Our baseline comparison uses
the median value for each parameter when calculating the
risk field. To simulate the condition using the low and high
values of a parameter, we used the 5th and 95th percentiles
of the parameter, respectively, leaving the remainder of the
parameters at their median level (see Table I). We used a
preview time of δp = 1.2 as in the previous section.

Figure 4 shows the differences as we vary parameters from
the baseline. In 4a we see that high values for A lead to
trajectories very close to the centerline while low values for
A stray farther from the centerline. While 4b shows more
consistent trajectories between conditions, higher values for
B leave a higher margin when passing the obstacle compared
to the lower value condition.

Since parameter D impacts user controls, we visualize the
acceleration under the different conditions rather than the
physical position. In Figure 4c we see that high values of D
lead to much more consistent acceleration compared to the
low values. For parameter E, in 4d low value trajectories
show a sharper decrease in steering rate after 5 time steps
compared to the baseline and high level trajectories.

Overall, we conclude that varying the risk model parame-
ters has the expected change in the trajectories. For instance,
increasing B causes the trajectories to clear the obstacle with
a much larger safety margin. Increasing A on the other hand
has the opposite effect of bringing trajectories closer to the
centerline.

VIII. DISCUSSION AND FUTURE WORK

In this paper, we have presented an approach to model
control choices of the human driver by quantifying the risk
and showing how the risk model can be inferred from data.



Fig. 3. (Top Row) Sample (x, y) trajectories generated by the risk model against ground truth shown by red stars with centerline shown as a dashed
black line and obstacle shown as red circle. Warning: x and y axes are drawn to different scales. (Bottom Row) Corresponding velocity (m/s) values over
time against ground truth.

Fig. 4. Simulated trajectories using extreme low (5th percentile) and high values (95th percentile) for the parameters. From left to right, top to bottom;
(a) parameter A: center line deviation risk weightage; (b) parameter B: obstacle avoidance risk weightage; (c) parameter D: cost for acceleration; (d)
parameter E: cost for turning rate control.

We have also demonstrated our approach on actual human
driving data from a medium-fidelity simulation environment
showing that our models can accurately predict future posi-
tions and generate qualitatively different driving behaviors.

In particular, we show that deviation of generated trajectories
from the human trajectory remains relatively stable over time
periods up to 20 seconds into the future.

The main area for improvement is that our model currently



does not capture how human operators control the velocity.
We plan to improve this aspect of our model in our future
work. For example, we can consider more complex represen-
tations of risk and cost beyond the simple quadratic model
presented here. Additionally, a driver’s choice of velocity
may depend on other factors such as their confidence in
driving or the overall level of risk of the current situation.
The fact that our models had very small values for the C
parameter that measures velocity deviations from intended
target indicates that human driver behavior during the task
may have been influenced by factors different from risk.
While our model was defined to maintain a predefined
velocity as stated in the task instructions, we observed that
the drivers themselves did not adhere to this requirement.

The main result of this paper shows that by using this risk
model framework with simple models for risk and control
cost, we are able to generate distinct driver behaviors such
as obstacle avoidance and keeping to the center of the lane.
Using real driver data collected in a simulation environment,
we have also shown that we can extract unique parameters
that characterize individual driver behavior. Future work
should investigate how accurately these models track more
complex human behavior over time. Additionally, this model
can be used as part of a predictive run-time monitoring
system, where the goal is to predict impending violations
of safety property (i.e., colliding with an obstacle) ahead of
time. This system could be integrated into future driver safety
interfaces and be used to study potential handover protocols
with autonomous driving subsystems.

At a general level, this framework can be used to model
a variety of scenarios and adapted to test hypotheses about
human operator behavior. As discussed above, we noted that
the participants in the study did not maintain the target
velocity given in the task instructions. When fitting the risk
model parameters, this behavior was indicated by the fact
that the fitted values for parameter C were heavily skewed
to 0, indicating no effect. Future work can systematically test
different forms of the risk function to see which is a better fit
for human behavior. This framework may also be adapted in
an attempt to infer the human’s true reward function during
the driving task.

In the future, we also plan to build on this framework in
order to address more dynamic scenarios involving multiple
vehicles and moving obstacles. Finally, we plan to address
more complex task requirements in our framework.
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